# **US Virgin Islands Advisory Data and Products**

Post-Hurricanes Irma and Maria

Prepared by:



Contract No. HSFE60-15-D-0005

Task Order 70FBR218F00000074

August 14, 2018



# **Table of Contents**

| 1.0 | Project | Summary                                                                  | 1  |
|-----|---------|--------------------------------------------------------------------------|----|
| 2.0 | Data Ac | quisition                                                                | 2  |
| 3.0 | Advisor | y Data                                                                   | 3  |
| 3.1 | Riveri  | ne Advisory Data Development                                             | 3  |
| 3   | 3.1.1 T | errain Processing                                                        | 4  |
| 3   | 3.1.2 F | łydrologic Analyses                                                      | 4  |
|     | 3.1.2.1 | Stream Network Preparation and Watershed Delineation                     | 9  |
|     | 3.1.2.2 | Peak Flows Computed from Equations Only                                  | 11 |
|     | 3.1.2.3 | Adjustments to Flows on St. Croix                                        | 12 |
|     | 3.1.2.4 | Summary of Discharges                                                    | 13 |
| 3   | 3.1.3 F | lydraulic Analyses                                                       | 38 |
|     | 3.1.3.1 | Discharges                                                               | 38 |
|     | 3.1.3.2 | Boundary Conditions                                                      | 38 |
|     | 3.1.3.3 | Cross Sections                                                           | 39 |
|     | 3.1.3.4 | Ineffective Areas                                                        | 39 |
|     | 3.1.3.5 | Channel Roughness Values                                                 | 39 |
|     | 3.1.3.6 | Structures                                                               | 39 |
|     | 3.1.3.7 | Expansion and Contraction                                                | 39 |
|     | 3.1.3.8 | Special Issues                                                           | 40 |
| 3   | 3.1.4 F | loodplain Mapping                                                        | 40 |
| 3   | 3.1.5 1 | -Percent Riverine Floodplain Product Limitations / Assumptions           | 42 |
| 3.2 | Coast   | tal Advisory Data Development                                            | 43 |
| 3   | 3.2.1 T | errain Processing                                                        | 44 |
|     | 3.2.1.1 | Coordinate Systems and Unit Conversions                                  | 44 |
|     | 3.2.1.2 | Mosaicked Topobathy DEM                                                  | 44 |
|     | 3.2.1.3 | Data Subregions                                                          | 44 |
|     | 3.2.1.4 | Shoreline Delineation                                                    | 45 |
| 3   | 3.2.2 L | ong Term Erosion                                                         | 45 |
| 3   | 3.2.3   | Storm Induced Coastal Erosion Prone Areas                                | 46 |
|     | 3.2.3.1 | Areas of Significant Storm Induced Erosion from Hurricane Maria and Irma | 47 |
|     | 3.2.3.2 | Areas of Expected 1-Percent-annual-Chance Storm Induced Erosion          | 47 |

| 3.2.3.3     | Storm Induced Erosion Product Limitations / Assumptions        | 48 |
|-------------|----------------------------------------------------------------|----|
| 3.3 Supp    | orting Advisory Products                                       | 48 |
| 3.3.1 F     | Floodplain Product Development                                 | 48 |
| 3.3.1.1     | Merged 1-Percent and 0.2-Percent Floodplain Generation Process | 48 |
| 3.3.1.2     | 0.2-Percent Fringe Floodplains                                 | 50 |
| 3.3.1.3     | Merged Riverine Cross Sections                                 | 50 |
| 3.3.1.4     | Final Floodplain Products                                      | 52 |
| 3.3.2       | Map Change Products                                            | 52 |
| 3.3.3       | WSEL and Depth Grid Products                                   | 54 |
| 3.3.3.1     | Water Surface Elevation (WSEL) Grid Development                | 54 |
| 3.3.3.2     | Depth Grid Development                                         | 57 |
| 3.3.4       | Critical Facility Flood Risk Summaries                         | 58 |
| 4.0 Referer | nces                                                           | 66 |
| 5.0 Append  | lices                                                          | 67 |
| 5.1 Appe    | ndix A: Hydraulic Analysis Streams List                        | 67 |
| 5.2 Appe    | ndix B: Manning's n Values                                     | 74 |
| 5.3 Appe    | ndix C: USVI Non-Standard Erosion Methodology                  | 76 |
| 5.3.1       | General Overview                                               | 76 |
| 5.3.2 I     | ntroduction                                                    | 76 |
| 533 I       | Methodology                                                    | 76 |

# **List of Tables**

| Table 2-1: Data Sources and Notes                                                                                                          | 2       |
|--------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Table 3-1: USGS Gage Data Details                                                                                                          | 5       |
| Table 3-2: Peak Flows (Q in cfs) and Drainage Area (DA in square miles) Relationships Thomas and St. John.                                 |         |
| Table 3-3: Peak Flows (Q in cfs) and Drainage Area (DA in square miles) Relationships Croix 8                                              | for St. |
| Table 3-4: Stream Network Preparation and Watershed Delineation Spatial Files                                                              | 10      |
| Table 3-5: Spatial Files for Computation of Peak Flows From Equations Only                                                                 | 11      |
| Table 3-6: Spatial Files and Related Data for the Final Peak Flows Adjusted for High Dr<br>Area and Regulation by Large Dams               | •       |
| Table 3-7: Summary of Discharges                                                                                                           | 13      |
| Table 3-8: Resolution, Vertical Datum, and Coordinate Systems Associated with the E Study Data, New Data Source, and Final Topographic DEM | _       |
| Table 3-9: Zone Change Combinations and Categories                                                                                         | 52      |
| Table 3-10: Critical Facilities Site Types                                                                                                 | 58      |
| Table 3-11: Summary of Critical Facility % Damage Average Estimates                                                                        | 64      |
| Table 5-1: Summary of Hydraulic Analyses                                                                                                   | 67      |
| Table 5-2: Summary of Manning's n Values                                                                                                   | 74      |
| Table 5-3: Storm Induced Erosion Applied in St. John                                                                                       | 77      |
| Table 5-4: Storm Induced Erosion Applied in St. Thomas                                                                                     | 79      |
| Table 5-5: Storm Induced Erosion Applied in St. Croix                                                                                      | 82      |
| List of Figures                                                                                                                            |         |
| Figure 1: HUC-10 Watersheds and Stream Reaches                                                                                             | 3       |
| Figure 2: Relationship of USVI 1-Percent Annual Chance Flows and Drainage Area                                                             | 6       |
| Figure 3: 1-Percent Annual Chance Peak Flow Analysis for St. Thomas and St. John                                                           | 7       |
| Figure 4: 1-Percent Annual Chance Peak Flow Analysis for St. Croix                                                                         | 8       |
| Figure 5: Post Processed Floodplain                                                                                                        | 41      |
| Figure 6: Post Processed Floodplain                                                                                                        | 42      |
| Figure 7. Subregions Used to Create Topographic DEM Data                                                                                   | 45      |
| Figure 8: Merged Floodplain Generation Process Illustration                                                                                | 49      |
| Figure 9: Selection of Most Conservative Riverine Water Surface Elevation Process                                                          | 51      |
|                                                                                                                                            |         |

| Figure 10: Flood Zone Change Summary                                   | .53 |
|------------------------------------------------------------------------|-----|
| Figure 11: Flood Depth Grid Example                                    | .54 |
| Figure 12: Coastal WSEL Grid Example                                   | .55 |
| Figure 13: Riverine WSEL Grid Example                                  | .56 |
| Figure 14: Coastal-Riverine Transition WSEL Grid Example               | .57 |
| Figure 15: Effective and ABFE Merged Floodplain Example                | .62 |
| Figure 16: Sample Critical Facility Flood Summary Report               | .63 |
| Figure 17: Area Where Effective 0.2% Flood Hazard Data Was Used        | .63 |
| Figure 18: Critical Facility Where 0.2% Water Surface Grid Not Created | .64 |

## 1.0 Project Summary

Hurricane Irma passed to the north of St. Thomas and St. John on September 6, 2017, as a Category 5 hurricane, with high winds impacting the Islands (Presidential Disaster Declaration FEMA-4335-DR). Hurricane Maria passed just to the south of St. Croix also as a Category 5 hurricane on September 20, 2017 (Presidential Disaster Declaration FEMA-4340-DR). Both hurricanes caused extensive damage across the U.S. Virgin Islands (USVI). Hurricane Irma caused minor coastal flooding; however coastal erosion, riverine flooding, and wind damages were significant in St. Thomas and St. John. Hurricane Maria also caused minor coastal flooding; however coastal erosion and wind damages were significant in St. Croix. In addition, there were areas within the current effective 1-percent and 0.2-percent annual chance floodplains that did not receive significant storm surge, but experienced significant wind damage. In the aftermath of these disasters, updated flood risk information is vital in order to inform rebuilding efforts across the USVI.

Accordingly, this project provides advisory flood hazard and coastal erosion data and associated products for USVI in an effort to increase resilience and reduce vulnerabilities within the islands. Data and products include:

- 1. Riverine Advisory Data
  - Hydrologic analyses
  - Hydraulic analyses
- 2. Coastal Advisory Data
  - Storm induced coastal erosion
- 3. Mapping Products
  - 1-percent and 0.2-percent annual chance floodplain mapping
  - Water surface elevation grids and depth grids
- 4. Supporting Advisory Products
  - Map change products
  - Critical facility flood risk summaries

This report documents the methodologies, assumptions, and data sources used to develop the advisory flood hazard data and associated products.

# 2.0 Data Acquisition

**Table 2-1** summarizes the data collected for development of the advisory flood information products and their origins.

**Table 2-1: Data Sources and Notes** 

| Data                                   | Source/Notes                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Topography Data                        | <ul> <li>National Oceanic and Atmospheric Administration (NOAA) 2013 Light Detection and Ranging (LiDAR) provided the base topographic data source for the project. This dataset was utilized for riverine modeling and erosion assessments.</li> <li>30 meter Digital Elevation Models (DEM) from USGS National Elevation Dataset (NED) were used only for hydrologic analyses.</li> </ul> |
| Streamlines                            | USGS National Hydrographic Dataset (NHD) streamlines were utilized for developing hydrologic model stream network. The dataset also included Hydrologic Unit Code – 10 (HUC-10) boundaries, used for data management and work distribution.                                                                                                                                                 |
| Effective FIRM Data                    | Effective flood hazard data for the study area was obtained from published FIRM databases and the National Flood Hazard Layer (NFHL).                                                                                                                                                                                                                                                       |
| Coordinated Needs<br>Management System | FEMA's Coordinated Needs Management System (CNMS) was utilized to identify and validate the scope for riverine advisory data development.                                                                                                                                                                                                                                                   |
| Pre-storm Imagery                      | Storm erosion analyses utilized aerial imagery from NOAA and Google Earth.                                                                                                                                                                                                                                                                                                                  |
| Post-storm Imagery                     | Storm erosion analyses utilized post-storm aerial imagery from Vexcel and NOAA.                                                                                                                                                                                                                                                                                                             |

## 3.0 Advisory Data

### 3.1 Riverine Advisory Data Development

Final riverine advisory data development deliverables include:

- A GIS line shapefile representing the 1-percent and 0.2-percent annual chance riverine floodplain boundaries delineated with the NOAA 2013 LiDAR, as well as GIS polygons covering the 1-percent and 0.2-percent annual chance floodplain.
- 2. 1- and 0.2-percent annual chance water surface elevation grids.
- 3. A GIS line-shapefile of Base Level Engineering (BLE) analysis cross sections and stream centerlines; these include water surface elevations for all recurrence intervals analyzed.
- 4. Advisory flood hazard information for existing CNMS stream mileage, as well as an additional 25 miles of unmapped streams.
- 5. All network hydrologic and hydraulic models, including BLE inputs and outputs.

Figure 1 shows the stream reaches (161 miles) where advisory data was developed.

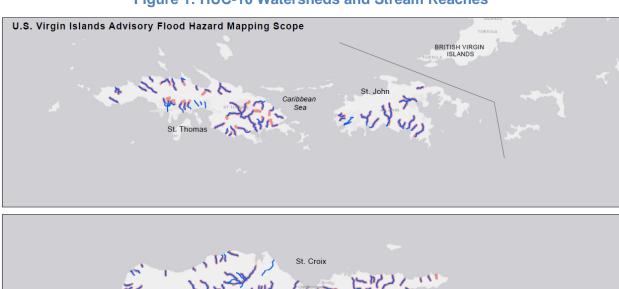



Figure 1: HUC-10 Watersheds and Stream Reaches

Proposed ABFE (BLE) streams

Effective stream study

These products are intended for digital delivery and dissemination for desktop GIS and/or Web-GIS platforms. The following sections provide information on data sources and limitations, productions procedures, and guidance on usability for each of the riverine advisory data deliverables.

#### 3.1.1 Terrain Processing

STARR II developed a custom tool to mosaic the 2013 NOAA LiDAR and NED DEMs, as needed, to fill any gaps that may occur in the processing of the terrain mosaic. The tool uses bilinear resampling to determine cell value and uses the mosaic process to make sure that all gaps were properly addressed. For well registered data tiles (i.e., same cell size, as well as same x/y registration of cell corners), the application mosaics the dataset first with neighboring tiles before resampling. The data developed by this custom tool was utilized in the riverine hydrologic and hydraulic analyses only.

#### 3.1.2 Hydrologic Analyses

There are no existing USGS regression equations readily available for the US Virgin Islands (St. Thomas, St. John, and St. Croix). The bullets below summarize the available flow data.

- Hydrologic analysis in the effective Flood Insurance Study (FIS) dated April 2007
  - The most recent hydrologic analysis was completed in 1993.
  - Rainfall/runoff methods used to compute flows for the Frenchtown Basin on St. Thomas and eight guts on St. Croix.
- USGS Stream Gages are listed in Table 3-1
  - Five gages have flow records greater than 10 years (three on St. Thomas, one on St. John, and one on St. Croix).
  - o There are no streamflow measurements available for the 2017 hurricane events.
- Additional stream flow data for the US Virgin Islands was not available.
- Due to non-availability of regression equations for USVI, Puerto Rico regression equations
  were applied to test their applicability. Peak flows computed using the equations for Puerto
  Rico were significantly lower than the FIS and gage flows. Therefore, the Puerto Rico
  equations are not applicable to the US Virgin Islands and were not used.

**Table 3-1: USGS Gage Data Details** 

| USGS Gage<br>Number | USGS Gage Location                                          | Start<br>Date | End Date   | # of Years<br>of Record |
|---------------------|-------------------------------------------------------------|---------------|------------|-------------------------|
| 50252000            | Bonne Resolution Gut at Bonne<br>Resolution St. Thomas USVI | 8/28/1963     | 10/10/2005 | 28                      |
| 50274000            | Turpentine Run at Mt. Zion, St. Thomas USVI                 | 4/28/1993     | 10/4/2005  | 14                      |
| 50276000            | Turpentine Run at Mariendal, St. Thomas USVI                | 8/28/1963     | 1/5/1992   | 17                      |
| 50292600            | Lameshur Bay Gut at Lameshur Bay, St. John USVI             | 11/27/1992    | 11/27/1992 | 1                       |
| 50294000            | Fish Bay Gut at Fish Bay, St. John USVI                     | 5/24/1992     | 11/26/1993 | 3                       |
| 50295000            | Guinea Gut at Bethany, St. John USVI                        | 8/27/1963     | 10/4/2005  | 27                      |
| 50332000            | River Gut at River, St. Croix USVI                          | 5/24/1992     | 5/27/1993  | 2                       |
| 50333500            | River Gut NR Golden Grove, St. Croix USVI                   | 10/26/1990    | 5/27/1993  | 3                       |
| 50345000            | Jolly Hill Gut at Jolly Hill, St. Croix USVI                | 1/4/1963      | 11/24/2005 | 29                      |

PeakFQ Bulletin 17B return period analyses were computed peak flows for the 10-percent, 4-percent, 2-percent, 1-percent, and 0.2-percent annual chance events. **Figure 2** shows the relationship between the logarithms of the 1-percent annual chance flows and the drainage areas for the FIS locations and gages on all three islands. The bullets below list observations and conclusions:

- The flow and drainage area relationships are different on St. Thomas and St. Croix.
- Because St. John is closer to St. Thomas, the hydrologic analyses are combined for both islands.
- The flows listed in the effective FIS on St. Thomas are approximately half of the gage flows. The gages have a long period of record justifying the gage analysis. Furthermore, the gage flows are more conservative. Therefore, only the gage flows, and not the St. Thomas FIS flows, are used for this hydrologic analysis.
- Because the Turpentine Run gage locations are close to each other and have successive period of records, PeakFQ input reflected a combined dataset to perform the frequency analysis of the gage flows.
- The gage and FIS flows on St. Croix have the same trend, so both datasets are used in this hydrologic analysis.

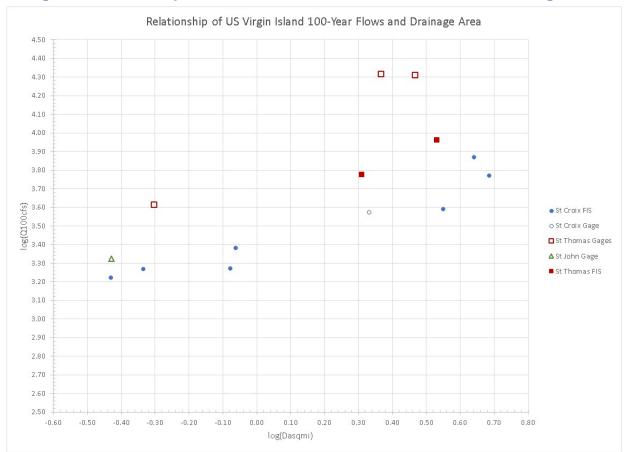



Figure 2: Relationship of USVI 1-Percent Annual Chance Flows and Drainage Area

There was a weak correlation between the flows and slope as well as flows and basin average annual precipitation. Therefore, the peak flows for this study have been derived from a flow and drainage area relationship.

For St. John and St. Thomas, a linear regression between the logarithms of the gage flows in cubic feet per second and drainage area in square miles was performed. **Figure 3** shows the graphical results for the 1-percent annual chance peak flows and **Table 3-2** shows the equation used for the 10-percent, 4-percent, 2-percent, 1-percent, and 0.2-percent annual chance events.

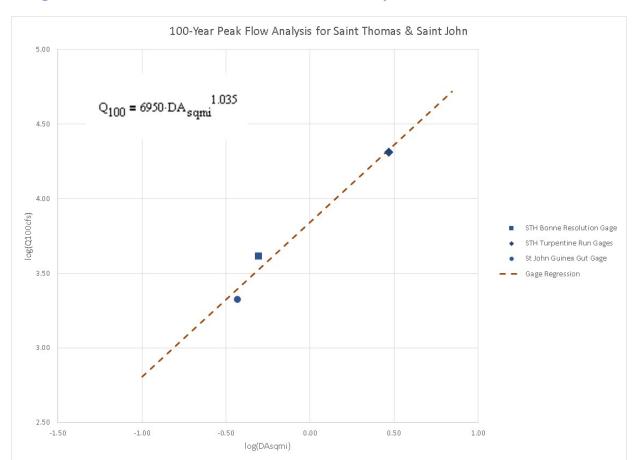



Figure 3: 1-Percent Annual Chance Peak Flow Analysis for St. Thomas and St. John

Table 3-2: Peak Flows (Q in cfs) and Drainage Area (DA in square miles) Relationships for St.

Thomas and St. John.

| Recurrence Interval       | Equation                      | R²    | Standard Error<br>(log units) |
|---------------------------|-------------------------------|-------|-------------------------------|
| 10-Percent Annual Chance  | Q = 1706·DA <sup>0.9713</sup> | 0.921 | 0.195                         |
| 4-Percent Annual Chance   | Q = 3214·DA <sup>0.9926</sup> | 0.952 | 0.153                         |
| 2-Percent Annual Chance   | Q = 4831·DA1.013              | 0.966 | 0.131                         |
| 1-Percent Annual Chance   | $Q = 6950 \cdot DA^{1.035}$   | 0.975 | 0.114                         |
| 0.2-Percent Annual Chance | Q = 14454·DA <sup>1.094</sup> | 0.985 | 0.092                         |

For St. Croix, a linear regression between the logarithms of the FIS and gage flows in cubic feet per second and drainage area in square miles was performed. At each location, the 4-percent annual chance FIS flows were estimated from a frequency curve developed from the other flow events at that location. **Figure 4** shows the graphical results for the 1-percent annual chance

peak flows and **Table 3-3** shows the equation used for the 10-percent, 4-percent, 2-percent, 1-percent, and 0.2-percent annual chance events.

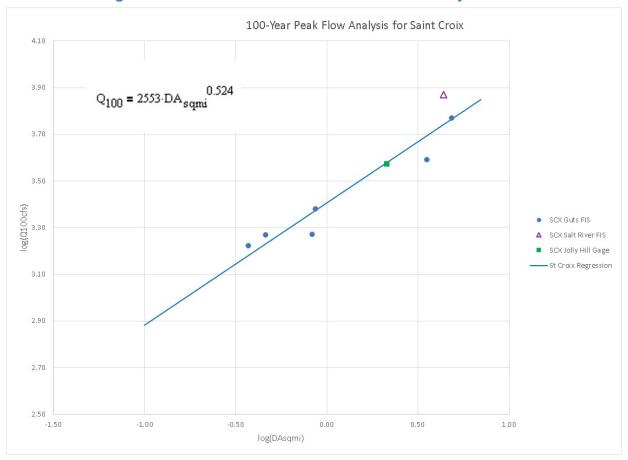



Figure 4: 1-Percent Annual Chance Peak Flow Analysis for St. Croix

Table 3-3: Peak Flows (Q in cfs) and Drainage Area (DA in square miles) Relationships for St.

Croix

| Recurrence Interval       | Equation                      | R²    | Standard Error<br>(log units) |
|---------------------------|-------------------------------|-------|-------------------------------|
| 10-Percent Annual Chance  | Q = 1169·DA <sup>0.3948</sup> | 0.495 | 0.192                         |
| 4-Percent Annual Chance   | Q = 1641·DA <sup>0.4525</sup> | 0.761 | 0.122                         |
| 2-Percent Annual Chance   | Q = 2030·DA <sup>0.4656</sup> | 0.846 | 0.096                         |
| 1-Percent Annual Chance   | Q = 2553·DA <sup>0.5240</sup> | 0.906 | 0.081                         |
| 0.2-Percent Annual Chance | Q = 3698·DA <sup>0.5989</sup> | 0.859 | 0.117                         |

Gridded hydrology was developed using the equations described above. For each island, a grid was generated for the drainage area parameter and for each of the flow events. Each grid cell has a value for the drainage area with the basin draining to that cell.

The primary steps for the development of hydrologic data are as follows:

- Prepared stream network, hydrologic network, and delineated watersheds
- Developed gridded input parameters and peak discharges from the equations summarized in Table 3-2 and Table 3-3
- Where the FIS discharges were higher, the computed discharges were increased to match the FIS discharges

The details for each of these steps are included in the following sections.

#### 3.1.2.1 Stream Network Preparation and Watershed Delineation

The stream network was derived from the CNMS study lines and the NHD high-definition flow lines for the watershed, and was used as a basis for stream centerlines and for developing hydrologic flow paths and drainage basins.

The steps used to develop the stream network, delineate watersheds, and compute drainage areas are listed below:

- A 30-meter DEM topographic dataset for each of the islands was created. These DEMs were extracted from the NED 1/3 arcsecond (approximately 10 meter) rasters, and were then downloaded from <a href="mailto:ttp://rockyftp.cr.usgs.gov/vdelivery/Datasets/Staged/Elevation/13/GridFloat">ttp://rockyftp.cr.usgs.gov/vdelivery/Datasets/Staged/Elevation/13/GridFloat</a>.
- 2. The NED 1/3 arcsecond data, as it existed from mid-2016, was utilized. These were mosaicked as needed and re-projected into USGS Albers North American Datum of 1983 (NAD 83), 30-meter grids to cover the islands. The sampling method utilized during re-projection was bilinear resampling. Note that this DEM was only used to develop hydrologic parameters and was not used for hydraulic modeling.
- 3. All CNMS and NHD high-definition lines that intersected the contributing basins were extracted and the lines classified as coastlines were deleted.
- 4. The lines were joined to create the stream network. Split flow locations were reviewed and the primary flow path identified. The alternate flow paths were deleted from the network.
- 5. This stream network was then used as the basis for development of an adjusted DEM the "burn" layer. In the burn process, DEM cells that crossed burn lines were modified to have lower elevations. The "burn" layer was necessary to accurately locate the flooding sources.
- 6. Sinks were inserted into the DEM at some stream outlets to the ocean. A sink was added by converting a DEM cell to a "null" value. When sinks were inserted, the flowlines would

terminate at the sink, therefore sinks were only inserted when it was believed with a high degree of confidence that the 1-percent annual chance event would not have sufficient volume to overflow the depression.

- 7. A flow direction grid was created from the filled DEM, where each cell pointed to the next downstream cell.
- 8. Watershed delineation was performed (i.e., flowlines and basins were created from the flow direction grids). Basins were delineated up to a threshold of 0.05 square mile, and hydrologic flowlines were also created up the 0.05 square mile of drainage area.
- 9. The following quality checks were performed:
  - Delineated watersheds and flow lines were examined for consistency with the
    expected flow paths for the basin. The flow directions and alignments between the
    stream network and the hydrologic network were checked and differences were
    highlighted with automated tools. Generally, differences occurred when two burn lines
    were too close together and the flow direction grid was incorrect. At these locations,
    only the larger stream line was burned into the DEM to correct the direction.
  - A drainage area grid was computed along the flow paths and checked against stream gage drainage areas and FIS drainage areas. If the flowlines or basins appeared to be in error, then the stream network was modified. If there was agreement, no modifications were made. Please note that StreamStats does not currently include the US Virgin Islands and could not be used for spot checks.
  - The flowlines were checked to make sure there were no cross-basin flows.
  - If modifications were made, the fill, flow direction, and watershed delineation steps were repeated and drainage areas were recalculated. The flagged locations were then checked again.

The spatial files developed are described in **Table 3-4**. All files listed below are projected in USGS Albers NAD 1983. The "\*" is an abbreviation for each island: STH for St. Thomas, SJN for St. John, and SCX for St. Croix.

**Table 3-4: Stream Network Preparation and Watershed Delineation Spatial Files** 

| File Name          | Туре     | Description                                                                               |
|--------------------|----------|-------------------------------------------------------------------------------------------|
| *_topo.bil         | grid     | Mosaicked 30-meter USGS DEM covering the contributing drainage area                       |
| *_burn_reaches.shp | polyline | Connected stream network derived from modified CNMS and NHD flow lines                    |
| *_sinks.shp        | point    | Sinks inserted into the DEM                                                               |
| *_topo_burn.bil    | grid     | 30-meter topography with stream network (i.e., burn reaches) burned in and sinks inserted |

| File Name                  | Туре     | Description                                                                                        |
|----------------------------|----------|----------------------------------------------------------------------------------------------------|
| *_fd.bil                   | grid     | Flow direction grid                                                                                |
| *_fa.bil                   | grid     | Flow accumulation grid                                                                             |
| *_sqmi.tif                 | grid     | Contributing drainage area (in square miles) for all drainage areas of 0.1 square miles or greater |
| *_basinpolys_0.05.shp      | polygon  | Basins delineated up to a threshold of 0.05 square miles of drainage area                          |
| *_basinpaths_0.05_join.shp | polyline | Hydrologic flow paths up to 0.05 square miles of drainage area                                     |
| *_basinpolys_0.1.shp       | polygon  | Basins delineated up to a threshold of 0.1 square miles of drainage area                           |
| *_basinpaths_0.1_join.shp  | polyline | Hydrologic flow paths up to 0.1 square miles of drainage area                                      |
| *_basinpolys_1.shp         | polygon  | Basins delineated up to a threshold of 1 square mile of drainage area                              |
| *_basinpaths_1_join.shp    | polyline | Hydrologic flow paths up to 1 square mile of drainage area                                         |
| *_basinpolys_5.shp         | polygon  | Basins delineated up to a threshold of 5 square miles of drainage area                             |
| *_basinpaths_5_join.shp    | polyline | Hydrologic flow paths up to 5 square miles of drainage area                                        |

#### 3.1.2.2 Peak Flows Computed from Equations Only

Peak flows for the 10-percent, 4-percent, 2-percent, 1-percent, and 0.2-percent annual chance events were computed utilizing the equations presented in the tables above. Flow grids were developed for each frequency event for drainage areas of 0.05 square mile or greater.

The spatial files developed are described in **Table 3-5**. All files listed below are projected in USGS Albers NAD 1983. The "\*" is an abbreviation for each island: STH for St. Thomas and SJN for St. John.

Please note that there were no adjustments to the computed flows for St. Thomas and St. John; these regression flows were the final flows used in the modeling.

Table 3-5: Spatial Files for Computation of Peak Flows From Equations Only

| File Name                            | Type | Description                                                                                                                          |
|--------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------|
| *_sqmi.tif                           | grid | Contributing drainage area in square miles for all drainage areas of 0.05 square mile or greater                                     |
| SCX_Q10_eqs_only.tif *_Q10_final.tif | grid | Regression equation peak stream flows with 10-percent annual chance exceedance for all drainage areas of 0.05 square mile or greater |

| File Name                              | Туре | Description                                                                                                                           |
|----------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------|
| SCX_Q25_eqs_only.tif *_Q25_final.tif   | grid | Regression equation peak stream flows with 4-percent annual chance exceedance for all drainage areas of 0.05 square mile or greater   |
| SCX_Q50_eqs_only.tif *_Q50_final.tif   | grid | Regression equation peak stream flows with 2-percent annual chance exceedance for all drainage areas of 0.05 square mile or greater   |
| SCX_Q100_eqs_only.tif *_Q100_final.tif | grid | Regression equation peak stream flows with 1-percent annual chance exceedance for all drainage areas of 0.05 square mile or greater   |
| SCX_Q500_eqs_only.tif *_Q500_final.tif | grid | Regression equation peak stream flows with 0.2-percent annual chance exceedance for all drainage areas of 0.05 square mile or greater |

<sup>&</sup>quot;\*" represent St. Thomas (STH) and St. John (SJN)

#### 3.1.2.3 Adjustments to Flows on St. Croix

Two adjustments were made to the computed flows in the detailed study areas on St. Croix:

- The downstream flow was applied constantly upstream to the detailed study boundary (i.e., no variation of flow with drainage area).
- For Guts 1, 2, 3, and 6 and the Salt River, the FIS flows were higher than the computed flows. The computed flows were replaced with the more conservative FIS flows on these reaches.

The spatial files developed are described in **Table 3-6**. All files listed below are projected in USGS Albers NAD 1983.

Table 3-6: Spatial Files and Related Data for the Final Peak Flows Adjusted for High Drainage Area and Regulation by Large Dams

| File Name           | Туре     | Description                                                                                               |
|---------------------|----------|-----------------------------------------------------------------------------------------------------------|
| SCX_adj_streams.shp | polyline | Polylines showing where FIS flows replaced the computed flows and where constant flow rates where applied |
| SCX_Q10_final.tif   | grid     | Final peak stream flows with gage and FIS flow adjustments for the 10-percent annual chance event         |
| SCX_Q25_final.tif   | grid     | Final peak stream flows with gage and FIS flow adjustments for the 4-percent annual chance event          |
| SCX_Q50_final.tif   | grid     | Final peak stream flows with gage and FIS flow adjustments for the 2-percent annual chance event          |
| SCX_Q100_final.tif  | grid     | Final peak stream flows with gage and FIS flow adjustments for the 1-percent annual chance event          |
| SCX_Q500_final.tif  | grid     | Final peak stream flows with gage and FIS flow adjustments for the 0.2-percent annual chance event        |

#### 3.1.2.4 Summary of Discharges

Table 3-7 provides a summary of discharges at two locations for each studied stream. These discharges were developed at the most upstream and downstream cross-section locations of each studied stream. In the table below streams without identified names in either the effective Flood Insurance Study or the USGS National Hydrography Dataset are identified as "Unnamed Stream" followed by the HEC-RAS model name from this study.

**Table 3-7: Summary of Discharges** 

| Cross         |                                           | Stream                           |                                                                             |                 | harge in       | Cubic Fe       | et Per Se       | cond              |
|---------------|-------------------------------------------|----------------------------------|-----------------------------------------------------------------------------|-----------------|----------------|----------------|-----------------|-------------------|
| Section<br>ID | Flooding Source Name                      | Station<br>(feet above<br>mouth) | Location Description                                                        | 10 Yr.<br>(10%) | 25 Yr.<br>(4%) | 50 Yr.<br>(2%) | 100 Yr.<br>(1%) | 500 Yr.<br>(0.2%) |
| 10001         | Unnamed Stream (Saint<br>Croix Model #33) | 33                               | Downstream End above Confluence with Caribbean Sea                          | 1,258           | 1,784          | 2,213          | 2,813           | 4,132             |
| 10070         | Unnamed Stream (Saint<br>Croix Model #33) | 13,505                           | Upstream End at Limit of Study                                              | 369             | 438            | 521            | 552             | 643               |
| 10080         | Unnamed Stream (Saint<br>Croix Model #36) | 2,637                            | Downstream End above Confluence with Unnamed Stream (Saint Croix Model #33) | 647             | 834            | 1,011          | 1,165           | 1,509             |
| 10093         | Unnamed Stream (Saint<br>Croix Model #36) | 4,964                            | Upstream End at Limit of Study                                              | 421             | 509            | 609            | 659             | 786               |
| 10101         | Unnamed Stream (Saint<br>Croix Model #39) | 1,867                            | Downstream End above Confluence with Unnamed Stream (Saint Croix Model #33) | 737             | 966            | 1,177          | 1,383           | 1,835             |
| 10132         | Unnamed Stream (Saint<br>Croix Model #39) | 8,209                            | Upstream End below Split from Gut #6 (Saint Croix Model #157)               | 568             | 718            | 867            | 990             | 990               |
| 10133         | Unnamed Stream (Saint<br>Croix Model #49) | 0                                | Downstream End at Confluence with Long<br>Point Bay                         | 1,354           | 1,941          | 2,413          | 3,101           | 4,619             |
| 10179         | Unnamed Stream (Saint<br>Croix Model #49) | 15,497                           | Upstream End at Limit of Study                                              | 802             | 1,065          | 1,301          | 1,548           | 2,087             |
| 10180         | Unnamed Stream (Saint<br>Croix Model #60) | 0                                | Downstream End at Confluence with Long<br>Point Bay                         | 913             | 1,237          | 1,517          | 1,840           | 2,543             |

| Cross         |                                            | Stream<br>Station  |                                                                                 | Disc            | harge in       | Cubic Fe       | et Per Se       | cond              |
|---------------|--------------------------------------------|--------------------|---------------------------------------------------------------------------------|-----------------|----------------|----------------|-----------------|-------------------|
| Section<br>ID | Flooding Source Name                       | (feet above mouth) | Location Description                                                            | 10 Yr.<br>(10%) | 25 Yr.<br>(4%) | 50 Yr.<br>(2%) | 100 Yr.<br>(1%) | 500 Yr.<br>(0.2%) |
| 10223         | Unnamed Stream (Saint<br>Croix Model #60)  | 8,209              | Upstream End at Limit of Study                                                  | 664             | 859            | 1,043          | 1,206           | 1,570             |
| 10224         | Gut #5 (Saint Croix<br>Model #76)          | 45                 | Downstream End above Confluence with Caribbean Sea                              | 1,931           | 1,931          | 1,931          | 4,969           | 7,916             |
| 10303         | Gut #5 (Saint Croix<br>Model #76)          | 20,461             | Upstream End at Limit of Study                                                  | 972             | 972            | 972            | 1,997           | 2,793             |
| 10308         | Unnamed Stream (Saint<br>Croix Model #84)  | 5,664              | Downstream End above Confluence with Gut #5 (Saint Croix Model #76)             | 1,177           | 1,177          | 1,177          | 2,576           | 3,737             |
| 10345         | Unnamed Stream (Saint<br>Croix Model #84)  | 13,240             | Upstream End at Limit of Study                                                  | 893             | 893            | 893            | 1,785           | 2,457             |
| 10356         | Unnamed Stream (Saint<br>Croix Model #93)  | 2,745              | Downstream End above Confluence with Unnamed Stream (Saint Croix Model #95)     | 568             | 718            | 867            | 980             | 1,238             |
| 10380         | Unnamed Stream (Saint<br>Croix Model #93)  | 7,300              | Upstream End at Limit of Study                                                  | 362             | 428            | 510            | 539             | 625               |
| 10389         | Unnamed Stream (Saint<br>Croix Model #95)  | 2,576              | Downstream End above Confluence with Gut #5 (Saint Croix Model #76)             | 771             | 1,019          | 1,243          | 1,470           | 1,968             |
| 10411         | Unnamed Stream (Saint<br>Croix Model #95)  | 6,841              | Upstream End at Limit of Study                                                  | 691             | 898            | 1,091          | 1,270           | 1,665             |
| 10420         | Jolly Hill Gut (Saint Croix<br>Model #128) | 2,781              | Downstream End above Confluence with Gut #6 (Saint Croix Model #157)            | 1,917           | 2,892          | 3,637          | 4,921           | 7,829             |
| 10465         | Jolly Hill Gut (Saint Croix<br>Model #128) | 14,020             | Upstream End at Limit of Study                                                  | 1,429           | 2,067          | 2,574          | 3,334           | 5,018             |
| 10471         | Unnamed Stream (Saint<br>Croix Model #148) | 2,533              | Downstream End above Confluence with Jolly<br>Hill Gut (Saint Croix Model #128) | 830             | 1,108          | 1,356          | 1,621           | 2,200             |

| Cross         |                                            | Stream<br>Station     |                                                                            | Disc            | harge in       | Cubic Fe       | et Per Se       | cond              |
|---------------|--------------------------------------------|-----------------------|----------------------------------------------------------------------------|-----------------|----------------|----------------|-----------------|-------------------|
| Section<br>ID | Flooding Source Name                       | (feet above<br>mouth) | Location Description                                                       | 10 Yr.<br>(10%) | 25 Yr.<br>(4%) | 50 Yr.<br>(2%) | 100 Yr.<br>(1%) | 500 Yr.<br>(0.2%) |
| 10514         | Unnamed Stream (Saint<br>Croix Model #148) | 7,631                 | Upstream End at Limit of Study                                             | 458             | 561            | 672            | 736             | 892               |
| 10515         | Gut #6 (Saint Croix<br>Model #157)         | 103                   | Downstream End above Confluence with Caribbean Sea                         | 2,790           | 3,778          | 4,320          | 5,890           | 9,517             |
| 10590         | Gut #6 (Saint Croix<br>Model #157)         | 13,321                | Upstream End at Limit of Study                                             | 401             | 481            | 574            | 616             | 729               |
| 10591         | River Gut (Saint Croix<br>Model #211)      | 28                    | Downstream End above Confluence with Caribbean Sea                         | 2,936           | 4,715          | 6,013          | 8,666           | 14,949            |
| 10721         | River Gut (Saint Croix<br>Model #211)      | 37,940                | Upstream End at Limit of Study                                             | 769             | 1,015          | 1,239          | 1,464           | 1,959             |
| 10728         | Unnamed Stream (Saint<br>Croix Model #222) | 1,009                 | Downstream End above Confluence with River<br>Gut (Saint Croix Model #211) | 575             | 728            | 879            | 996             | 1,260             |
| 10760         | Unnamed Stream (Saint<br>Croix Model #222) | 4,321                 | Upstream End at Limit of Study                                             | 364             | 431            | 513            | 543             | 630               |
| 10768         | Unnamed Stream (Saint<br>Croix Model #229) | 1,752                 | Downstream End above Confluence with River<br>Gut (Saint Croix Model #211) | 886             | 1,194          | 1,463          | 1,766           | 2,427             |
| 10800         | Unnamed Stream (Saint<br>Croix Model #229) | 7,386                 | Upstream End at Limit of Study                                             | 376             | 448            | 533            | 567             | 663               |
| 10806         | Unnamed Stream (Saint<br>Croix Model #241) | 1,857                 | Downstream End above Confluence with River<br>Gut (Saint Croix Model #211) | 1,483           | 2,156          | 2,688          | 3,502           | 5,307             |
| 10860         | Unnamed Stream (Saint<br>Croix Model #241) | 15,126                | Upstream End at Limit of Study                                             | 844             | 1,130          | 1,383          | 1,658           | 2,257             |
| 10870         | Unnamed Stream (Saint<br>Croix Model #264) | 3,347                 | Downstream End above Confluence with River<br>Gut (Saint Croix Model #211) | 2,048           | 2,048          | 2,048          | 5,373           | 8,657             |

| Cross         |                                            | Stream<br>Station     |                                                                              | Disc            | harge in       | Cubic Fe       | et Per Se       | cond              |
|---------------|--------------------------------------------|-----------------------|------------------------------------------------------------------------------|-----------------|----------------|----------------|-----------------|-------------------|
| Section<br>ID | Flooding Source Name                       | (feet above<br>mouth) | Location Description                                                         | 10 Yr.<br>(10%) | 25 Yr.<br>(4%) | 50 Yr.<br>(2%) | 100 Yr.<br>(1%) | 500 Yr.<br>(0.2%) |
| 10937         | Unnamed Stream (Saint<br>Croix Model #264) | 24,284                | Upstream End at Limit of Study                                               | 503             | 503            | 503            | 834             | 1,029             |
| 10942         | Unnamed Stream (Saint<br>Croix Model #266) | 918                   | Downstream End above Confluence with Unnamed Stream (Saint Croix Model #264) | 448             | 546            | 654            | 714             | 862               |
| 10964         | Unnamed Stream (Saint<br>Croix Model #266) | 3,348                 | Upstream End at Limit of Study                                               | 363             | 430            | 511            | 541             | 628               |
| 10972         | Unnamed Stream (Saint<br>Croix Model #272) | 2,207                 | Downstream End above Confluence with Unnamed Stream (Saint Croix Model #264) | 856             | 1,147          | 1,405          | 1,687           | 2,303             |
| 10976         | Unnamed Stream (Saint<br>Croix Model #272) | 2,981                 | Upstream End at Limit of Study                                               | 802             | 1,065          | 1,301          | 1,548           | 2,087             |
| 10993         | Unnamed Stream (Saint<br>Croix Model #275) | 3,190                 | Downstream End above Confluence with Unnamed Stream (Saint Croix Model #264) | 410             | 494            | 591            | 636             | 636               |
| 10999         | Unnamed Stream (Saint<br>Croix Model #275) | 4,351                 | Upstream End below Split from Unnamed Stream (Saint Croix Model #266)        | 410             | 494            | 591            | 636             | 636               |
| 11001         | Bethlehem Gut (Saint<br>Croix Model #285)  | 1,920                 | Downstream End above Confluence with Unnamed Stream (Saint Croix Model #264) | 1,259           | 1,786          | 2,215          | 2,816           | 4,137             |
| 11056         | Bethlehem Gut (Saint<br>Croix Model #285)  | 15,472                | Upstream End at Limit of Study                                               | 421             | 508            | 608            | 657             | 784               |
| 11057         | Unnamed Stream (Saint<br>Croix Model #301) | 0                     | Downstream End at Confluence with Caribbean Sea                              | 1,280           | 1,280          | 1,280          | 2,878           | 4,241             |
| 11113         | Unnamed Stream (Saint<br>Croix Model #301) | 11,399                | Upstream End at Limit of Study                                               | 422             | 422            | 422            | 660             | 789               |
| 11119         | Unnamed Stream (Saint<br>Croix Model #312) | 1,149                 | Downstream End above Confluence with Creque Gut (Saint Croix Model #318)     | 756             | 996            | 1,215          | 1,432           | 1,910             |

| Cross         |                                            | Stream Station     |                                                                              |                 | harge in       | Cubic Fe       | et Per Se       | cond              |
|---------------|--------------------------------------------|--------------------|------------------------------------------------------------------------------|-----------------|----------------|----------------|-----------------|-------------------|
| Section<br>ID | Flooding Source Name                       | (feet above mouth) | Location Description                                                         | 10 Yr.<br>(10%) | 25 Yr.<br>(4%) | 50 Yr.<br>(2%) | 100 Yr.<br>(1%) | 500 Yr.<br>(0.2%) |
| 11133         | Unnamed Stream (Saint<br>Croix Model #312) | 3,941              | Upstream End at Limit of Study                                               | 672             | 869            | 1,056          | 1,223           | 1,595             |
| 11134         | Creque Gut (Saint Croix<br>Model #318)     | 15                 | Downstream End above Confluence with Caribbean Sea                           | 1,222           | 1,727          | 2,140          | 2,709           | 3,958             |
| 11206         | Creque Gut (Saint Croix<br>Model #318)     | 8,347              | Upstream End at Limit of Study                                               | 897             | 1,212          | 1,486          | 1,797           | 2,476             |
| 11215         | Unnamed Stream (Saint<br>Croix Model #335) | 6,487              | Downstream End above Confluence with Unnamed Stream (Saint Croix Model #337) | 785             | 1,039          | 1,269          | 1,505           | 2,021             |
| 11246         | Unnamed Stream (Saint<br>Croix Model #335) | 11,848             | Upstream End at Limit of Study                                               | 371             | 440            | 524            | 556             | 648               |
| 11257         | Unnamed Stream (Saint<br>Croix Model #336) | 5,911              | Downstream End above Confluence with Unnamed Stream (Saint Croix Model #335) | 529             | 661            | 797            | 891             | 1,110             |
| 11271         | Unnamed Stream (Saint<br>Croix Model #336) | 8,026              | Upstream End at Limit of Study                                               | 420             | 507            | 607            | 656             | 782               |
| 11276         | Unnamed Stream (Saint<br>Croix Model #337) | 6,108              | Downstream End above Confluence with Unnamed Stream (Saint Croix Model #341) | 1,094           | 1,521          | 1,877          | 2,337           | 3,343             |
| 11314         | Unnamed Stream (Saint<br>Croix Model #337) | 14,139             | Upstream End at Limit of Study                                               | 523             | 653            | 787            | 879             | 1,093             |
| 11326         | Unnamed Stream (Saint<br>Croix Model #340) | 5,926              | Downstream End above Confluence with Unnamed Stream (Saint Croix Model #341) | 677             | 878            | 1,066          | 1,237           | 1,616             |
| 11341         | Unnamed Stream (Saint<br>Croix Model #340) | 8,578              | Upstream End at Limit of Study                                               | 518             | 645            | 777            | 867             | 1,075             |
| 11342         | Unnamed Stream (Saint<br>Croix Model #341) | 0                  | Downstream End at Confluence at Limetree<br>Bay                              | 2,368           | 3,685          | 4,666          | 6,514           | 10,788            |

| Cross         |                                            | Stream<br>Station     |                                                                              | Disc            | harge in       | Cubic Fe       | et Per Se       | er Second         |
|---------------|--------------------------------------------|-----------------------|------------------------------------------------------------------------------|-----------------|----------------|----------------|-----------------|-------------------|
| Section<br>ID | Flooding Source Name                       | (feet above<br>mouth) | Location Description                                                         | 10 Yr.<br>(10%) | 25 Yr.<br>(4%) | 50 Yr.<br>(2%) | 100 Yr.<br>(1%) | 500 Yr.<br>(0.2%) |
| 11400         | Unnamed Stream (Saint<br>Croix Model #341) | 21,823                | Upstream End at Limit of Study                                               | 362             | 428            | 510            | 539             | 625               |
| 11410         | Unnamed Stream (Saint<br>Croix Model #342) | 5,861                 | Downstream End above Confluence with Unnamed Stream (Saint Croix Model #341) | 632             | 811            | 983            | 1,129           | 1,455             |
| 11432         | Unnamed Stream (Saint<br>Croix Model #342) | 9,494                 | Upstream End at Limit of Study                                               | 416             | 502            | 600            | 648             | 771               |
| 11440         | Unnamed Stream (Saint<br>Croix Model #348) | 5,524                 | Downstream End above Confluence with Unnamed Stream (Saint Croix Model #341) | 1,156           | 1,621          | 2,004          | 2,516           | 3,637             |
| 11460         | Unnamed Stream (Saint<br>Croix Model #348) | 12,878                | Upstream End at Limit of Study                                               | 366             | 434            | 516            | 547             | 635               |
| 11461         | Unnamed Stream (Saint<br>Croix Model #383) | 10                    | Downstream End above Confluence with Caribbean Sea                           | 620             | 794            | 961            | 1,101           | 1,414             |
| 11544         | Unnamed Stream (Saint<br>Croix Model #383) | 3,916                 | Upstream End at Limit of Study                                               | 421             | 509            | 609            | 659             | 786               |
| 11545         | Unnamed Stream (Saint<br>Croix Model #386) | 5                     | Downstream End above Confluence with Caribbean Sea                           | 737             | 967            | 1,178          | 1,384           | 1,836             |
| 11578         | Unnamed Stream (Saint<br>Croix Model #386) | 3,310                 | Upstream End at Limit of Study                                               | 611             | 781            | 945            | 1,080           | 1,383             |
| 11584         | Drainage Canal (Saint<br>Croix Model #400) | 1,297                 | Downstream End above Confluence with Drainage Canal (Saint Croix Model #403) | 696             | 906            | 1,101          | 1,283           | 1,684             |
| 11624         | Drainage Canal (Saint<br>Croix Model #400) | 8,376                 | Upstream End at Limit of Study                                               | 381             | 454            | 541            | 576             | 675               |
| 11625         | Drainage Canal (Saint<br>Croix Model #403) | 0                     | Downstream End at Confluence at Canegarden Bay                               | 2,319           | 3,598          | 4,553          | 6,337           | 10,453            |

| Cross         |                                            | Stream Station     |                                                                              |                 | harge in       | Cubic Fe       | et Per Se       | cond              |
|---------------|--------------------------------------------|--------------------|------------------------------------------------------------------------------|-----------------|----------------|----------------|-----------------|-------------------|
| Section<br>ID | Flooding Source Name                       | (feet above mouth) | Location Description                                                         | 10 Yr.<br>(10%) | 25 Yr.<br>(4%) | 50 Yr.<br>(2%) | 100 Yr.<br>(1%) | 500 Yr.<br>(0.2%) |
| 11722         | Drainage Canal (Saint<br>Croix Model #403) | 22,049             | Upstream End at Limit of Study                                               | 408             | 491            | 587            | 631             | 749               |
| 11730         | Unnamed Stream (Saint<br>Croix Model #426) | 2,174              | Downstream End above Confluence with Drainage Canal (Saint Croix Model #403) | 1,474           | 2,141          | 2,669          | 3,474           | 5,259             |
| 11809         | Unnamed Stream (Saint<br>Croix Model #426) | 18,080             | Upstream End at Limit of Study                                               | 393             | 471            | 561            | 601             | 708               |
| 11810         | Unnamed Stream (Saint<br>Croix Model #448) | 79                 | Downstream End above Confluence with Manchenil Bay                           | 854             | 1,145          | 1,402          | 1,683           | 2,297             |
| 11824         | Unnamed Stream (Saint<br>Croix Model #448) | 3,393              | Upstream End at Limit of Study                                               | 717             | 937            | 1,141          | 1,335           | 1,763             |
| 11825         | Unnamed Stream (Saint<br>Croix Model #455) | 18                 | Downstream End above Confluence with Caribbean Sea                           | 755             | 994            | 1,212          | 1,429           | 1,905             |
| 11849         | Unnamed Stream (Saint<br>Croix Model #455) | 2,569              | Upstream End at Limit of Study                                               | 509             | 633            | 762            | 848             | 1,049             |
| 11850         | Caledonia Gut (Saint<br>Croix Model #460)  | 11                 | Downstream End above Confluence with Hams Bay                                | 1,236           | 1,750          | 2,169          | 2,750           | 4,026             |
| 11879         | Caledonia Gut (Saint<br>Croix Model #460)  | 3,015              | Upstream End at Limit of Study                                               | 1,164           | 1,633          | 2,020          | 2,539           | 3,674             |
| 11880         | Unnamed Stream (Saint<br>Croix Model #471) | 21                 | Downstream End above Confluence with Manchenil Bay                           | 1,373           | 1,973          | 2,454          | 3,161           | 4,720             |
| 11944         | Unnamed Stream (Saint<br>Croix Model #471) | 14,367             | Upstream End at Limit of Study                                               | 389             | 465            | 554            | 592             | 696               |
| 11945         | Unnamed Stream (Saint<br>Croix Model #481) | 64                 | Downstream End above Confluence with Halfpenny Bay                           | 1,022           | 1,407          | 1,733          | 2,136           | 3,016             |

| Cross         |                                            | Stream<br>Station  |                                                    | Disc            | harge in       | Cubic Fe       | et Per Se       | cond              |
|---------------|--------------------------------------------|--------------------|----------------------------------------------------|-----------------|----------------|----------------|-----------------|-------------------|
| Section<br>ID | Flooding Source Name                       | (feet above mouth) | Location Description                               | 10 Yr.<br>(10%) | 25 Yr.<br>(4%) | 50 Yr.<br>(2%) | 100 Yr.<br>(1%) | 500 Yr.<br>(0.2%) |
| 11997         | Unnamed Stream (Saint<br>Croix Model #481) | 8,924              | Upstream End at Limit of Study                     | 364             | 431            | 513            | 543             | 630               |
| 11998         | Unnamed Stream (Saint<br>Croix Model #500) | 2,675              | Downstream End above Confluence with Caribbean Sea | 968             | 1,322          | 1,625          | 1,988           | 2,778             |
| 12042         | Unnamed Stream (Saint<br>Croix Model #500) | 10,202             | Upstream End at Limit of Study                     | 372             | 441            | 526            | 558             | 650               |
| 12043         | Unnamed Stream (Saint<br>Croix Model #502) | 0                  | Downstream End at Confluence with Caribbean Sea    | 547             | 688            | 830            | 932             | 1,170             |
| 12060         | Unnamed Stream (Saint<br>Croix Model #502) | 1,005              | Upstream End at Limit of Study                     | 486             | 600            | 720            | 796             | 976               |
| 12061         | Unnamed Stream (Saint<br>Croix Model #506) | 7                  | Downstream End above Confluence with Annaly Bay    | 706             | 921            | 1,120          | 1,308           | 1,722             |
| 12084         | Unnamed Stream (Saint<br>Croix Model #506) | 2,025              | Upstream End at Limit of Study                     | 632             | 811            | 984            | 1,130           | 1,456             |
| 12085         | Unnamed Stream (Saint<br>Croix Model #510) | 62                 | Downstream End above Confluence with Caribbean Sea | 750             | 986            | 1,202          | 1,416           | 1,885             |
| 12136         | Unnamed Stream (Saint<br>Croix Model #510) | 5,607              | Upstream End at Limit of Study                     | 365             | 432            | 515            | 545             | 633               |
| 12164         | Unnamed Stream (Saint<br>Croix Model #512) | 29                 | Downstream End above Confluence with Spring Bay    | 664             | 858            | 1,041          | 1,204           | 1,567             |
| 12183         | Unnamed Stream (Saint<br>Croix Model #512) | 1,683              | Upstream End at Limit of Study                     | 559             | 705            | 851            | 960             | 1,209             |
| 12184         | Unnamed Stream (Saint<br>Croix Model #524) | 8                  | Downstream End above Confluence with Caribbean Sea | 713             | 931            | 1,133          | 1,325           | 1,747             |

| Cross         |                                            | Stream<br>Station     |                                                                              | Disc            | harge in       | Cubic Fe       | et Per Se       | cond              |
|---------------|--------------------------------------------|-----------------------|------------------------------------------------------------------------------|-----------------|----------------|----------------|-----------------|-------------------|
| Section<br>ID | Flooding Source Name                       | (feet above<br>mouth) | Location Description                                                         | 10 Yr.<br>(10%) | 25 Yr.<br>(4%) | 50 Yr.<br>(2%) | 100 Yr.<br>(1%) | 500 Yr.<br>(0.2%) |
| 12198         | Unnamed Stream (Saint<br>Croix Model #524) | 1,380                 | Upstream End at Limit of Study                                               | 675             | 874            | 1,062          | 1,231           | 1,606             |
| 12199         | Unnamed Stream (Saint<br>Croix Model #527) | 92                    | Downstream End above Confluence with Great Pond Bay                          | 709             | 925            | 1,126          | 1,315           | 1,732             |
| 12227         | Unnamed Stream (Saint<br>Croix Model #527) | 5,008                 | Upstream End at Limit of Study                                               | 382             | 455            | 542            | 578             | 677               |
| 12228         | Unnamed Stream (Saint<br>Croix Model #530) | 10                    | Downstream End above Confluence with Caribbean Sea                           | 731             | 958            | 1,167          | 1,369           | 1,814             |
| 12245         | Unnamed Stream (Saint<br>Croix Model #530) | 2,159                 | Upstream End at Limit of Study                                               | 484             | 597            | 717            | 792             | 970               |
| 12246         | Unnamed Stream (Saint<br>Croix Model #540) | 206                   | Downstream End above Confluence with Great Pond at Great Pond Bay            | 1,187           | 1,671          | 2,068          | 2,607           | 3,787             |
| 12268         | Unnamed Stream (Saint<br>Croix Model #540) | 4,251                 | Upstream End at Limit of Study                                               | 427             | 517            | 618            | 670             | 802               |
| 12278         | Unnamed Stream (Saint<br>Croix Model #542) | 1,923                 | Downstream End above Confluence with Unnamed Stream (Saint Croix Model #540) | 564             | 712            | 860            | 971             | 1,225             |
| 12292         | Unnamed Stream (Saint<br>Croix Model #542) | 4,576                 | Upstream End at Limit of Study                                               | 412             | 497            | 593            | 640             | 760               |
| 12293         | Unnamed Stream (Saint<br>Croix Model #544) | 206                   | Downstream End above Confluence with Great Pond at Great Pond Bay            | 818             | 1,090          | 1,332          | 1,590           | 2,152             |
| 12329         | Unnamed Stream (Saint<br>Croix Model #544) | 6,393                 | Upstream End at Limit of Study                                               | 399             | 479            | 571            | 613             | 724               |
| 12330         | Unnamed Stream (Saint<br>Croix Model #551) | 2,696                 | Downstream End above Confluence with Great<br>Pond at Great Pond Bay         | 671             | 868            | 1,055          | 1,222           | 1,593             |

| Cross         |                                            | Stream<br>Station     |                                                        | Disc            | harge in       | Cubic Fe       | et Per Se       | econd             |
|---------------|--------------------------------------------|-----------------------|--------------------------------------------------------|-----------------|----------------|----------------|-----------------|-------------------|
| Section<br>ID | Flooding Source Name                       | (feet above<br>mouth) | Location Description                                   | 10 Yr.<br>(10%) | 25 Yr.<br>(4%) | 50 Yr.<br>(2%) | 100 Yr.<br>(1%) | 500 Yr.<br>(0.2%) |
| 12359         | Unnamed Stream (Saint<br>Croix Model #551) | 6,319                 | Upstream End at Limit of Study                         | 384             | 459            | 547            | 583             | 684               |
| 12360         | Unnamed Stream (Saint<br>Croix Model #555) | 156                   | Downstream End above Confluence with Caribbean Sea     | 870             | 1,170          | 1,433          | 1,726           | 2,364             |
| 12411         | Unnamed Stream (Saint<br>Croix Model #555) | 6,599                 | Upstream End at Limit of Study                         | 416             | 502            | 600            | 648             | 771               |
| 12412         | Unnamed Stream (Saint<br>Croix Model #560) | 22                    | Downstream End above Confluence with Caribbean Sea     | 583             | 739            | 894            | 1,014           | 1,287             |
| 12428         | Unnamed Stream (Saint<br>Croix Model #560) | 2,845                 | Upstream End at Limit of Study                         | 362             | 428            | 510            | 539             | 625               |
| 12429         | Gut #2 (Saint Croix<br>Model #569)         | 0                     | Downstream End at Confluence with Christiansted Harbor | 1,030           | 1,257          | 1,430          | 1,850           | 2,330             |
| 12448         | Gut #2 (Saint Croix<br>Model #569)         | 4,038                 | Upstream End at Limit of Study                         | 518             | 645            | 777            | 867             | 1,075             |
| 12453         | Unnamed Stream (Saint<br>Croix Model #579) | 777                   | Downstream End above Confluence with Caribbean Sea     | 565             | 713            | 861            | 972             | 1,227             |
| 12470         | Unnamed Stream (Saint<br>Croix Model #579) | 2,593                 | Upstream End at Limit of Study                         | 441             | 537            | 643            | 701             | 844               |
| 12471         | Unnamed Stream (Saint<br>Croix Model #584) | 63                    | Downstream End above Confluence with Robin Bay         | 700             | 911            | 1,108          | 1,292           | 1,697             |
| 12494         | Unnamed Stream (Saint<br>Croix Model #584) | 4,357                 | Upstream End at Limit of Study                         | 397             | 476            | 569            | 609             | 719               |
| 12495         | Gut #1 (Saint Croix<br>Model #595)         | 0                     | Downstream End at Confluence with Caribbean Sea        | 920             | 1,202          | 1,420          | 1,670           | 2,400             |

| Cross         |                                            | Stream<br>Station     |                                                                              | Disc            | harge in       | Cubic Fe       | et Per Se       | cond              |
|---------------|--------------------------------------------|-----------------------|------------------------------------------------------------------------------|-----------------|----------------|----------------|-----------------|-------------------|
| Section<br>ID | Flooding Source Name                       | (feet above<br>mouth) | Location Description                                                         | 10 Yr.<br>(10%) | 25 Yr.<br>(4%) | 50 Yr.<br>(2%) | 100 Yr.<br>(1%) | 500 Yr.<br>(0.2%) |
| 12524         | Gut #1 (Saint Croix<br>Model #595)         | 5,132                 | Upstream End at Limit of Study                                               | 438             | 533            | 639            | 695             | 835               |
| 12525         | Unnamed Stream (Saint<br>Croix Model #601) | 25                    | Downstream End above Confluence with Caribbean Sea                           | 1,087           | 1,510          | 1,864          | 2,319           | 3,314             |
| 12564         | Unnamed Stream (Saint<br>Croix Model #601) | 3,765                 | Upstream End at Limit of Study                                               | 682             | 885            | 1,076          | 1,250           | 1,634             |
| 12565         | Gut #3 (Saint Croix<br>Model #609)         | 21                    | Downstream End above Confluence with Gallows Bay                             | 1,240           | 1,684          | 2,090          | 2,400           | 3,450             |
| 12593         | Gut #3 (Saint Croix<br>Model #609)         | 5,198                 | Upstream End at Limit of Study                                               | 746             | 980            | 1,194          | 1,405           | 1,869             |
| 12596         | Unnamed Stream (Saint<br>Croix Model #626) | 3,578                 | Downstream End above Confluence with Gut #4 (Saint Croix Model #628)         | 743             | 976            | 1,189          | 1,398           | 1,858             |
| 12619         | Unnamed Stream (Saint<br>Croix Model #626) | 6,584                 | Upstream End at Limit of Study                                               | 482             | 594            | 714            | 788             | 964               |
| 12620         | Gut #4 (Saint Croix<br>Model #628)         | 126                   | Downstream End above Confluence with Altona Lagoon                           | 1,090           | 1,514          | 1,869          | 2,326           | 3,324             |
| 12643         | Gut #4 (Saint Croix<br>Model #628)         | 6,033                 | Upstream End at Limit of Study                                               | 504             | 626            | 753            | 836             | 1,033             |
| 12644         | Unnamed Stream (Saint<br>Croix Model #634) | 22                    | Downstream End above Confluence with Caribbean Sea                           | 713             | 932            | 1,134          | 1,326           | 1,749             |
| 12690         | Unnamed Stream (Saint<br>Croix Model #634) | 4,393                 | Upstream End at Limit of Study                                               | 376             | 448            | 533            | 567             | 663               |
| 12693         | Unnamed Stream (Saint<br>Croix Model #635) | 401                   | Downstream End above Confluence with Unnamed Stream (Saint Croix Model #634) | 407             | 490            | 585            | 630             | 747               |

| Cross         |                                                             | Stream Station        | Disc                                                                                             | harge in        | Cubic Fe       | et Per Se      | cond            |                   |
|---------------|-------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------|-----------------|----------------|----------------|-----------------|-------------------|
| Section<br>ID | Flooding Source Name                                        | (feet above<br>mouth) | Location Description                                                                             | 10 Yr.<br>(10%) | 25 Yr.<br>(4%) | 50 Yr.<br>(2%) | 100 Yr.<br>(1%) | 500 Yr.<br>(0.2%) |
| 12717         | Unnamed Stream (Saint<br>Croix Model #635)                  | 2,025                 | Upstream End at Limit of Study                                                                   | 363             | 430            | 511            | 541             | 628               |
| 12718         | Unnamed Stream (Saint<br>Croix Model #650)                  | 37                    | Downstream End above Confluence with Caribbean Sea                                               | 561             | 707            | 854            | 963             | 1,214             |
| 12752         | Unnamed Stream (Saint<br>Croix Model #650)                  | 3,422                 | Upstream End at Limit of Study                                                                   | 367             | 435            | 518            | 549             | 638               |
| 12753         | Salt River (Saint Croix<br>Model #675)                      | 0                     | Downstream End at Confluence with Salt River<br>Bay                                              | 3,300           | 4,713          | 5,880          | 7,400           | 11,000            |
| 12817         | Salt River (Saint Croix<br>Model #675)                      | 17,027                | Upstream End at Limit of Study                                                                   | 983             | 1,345          | 1,655          | 2,028           | 2,843             |
| 12823         | Salt River Diversion<br>Channel (Saint Croix<br>Model #677) | 2,682                 | Downstream End above Confluence with Salt<br>River (Saint Croix Model #675)                      | 3,300           | 4,713          | 5,880          | 7,400           | 11,000            |
| 12840         | Salt River Diversion<br>Channel (Saint Croix<br>Model #677) | 6,777                 | Upstream End below Split from Salt River (Saint Croix Model #675)                                | 3,300           | 4,713          | 5,880          | 7,400           | 11,000            |
| 12853         | Unnamed Stream (Saint<br>Croix Model #681)                  | 1,554                 | Downstream End above Confluence with Salt<br>River Diversion Channel (Saint Croix Model<br>#677) | 879             | 1,183          | 1,450          | 1,748           | 2,398             |
| 12914         | Unnamed Stream (Saint<br>Croix Model #681)                  | 7,290                 | Upstream End at Limit of Study                                                                   | 366             | 434            | 516            | 547             | 635               |
| 12923         | Unnamed Stream (Saint<br>Croix Model #686)                  | 2,135                 | Downstream End above Confluence with Salt<br>River (Saint Croix Model #675)                      | 901             | 1,218          | 1,494          | 1,808           | 2,493             |
| 12933         | Unnamed Stream (Saint<br>Croix Model #686)                  | 3,907                 | Upstream End at Limit of Study                                                                   | 798             | 1,059          | 1,294          | 1,538           | 2,072             |

| Cross         | Flooding Source Name                       | Stream                           | Discharge in Cubic Feet Per Second                                       |                 |                |                |                 |                   |  |
|---------------|--------------------------------------------|----------------------------------|--------------------------------------------------------------------------|-----------------|----------------|----------------|-----------------|-------------------|--|
| Section<br>ID |                                            | Station<br>(feet above<br>mouth) | Location Description                                                     | 10 Yr.<br>(10%) | 25 Yr.<br>(4%) | 50 Yr.<br>(2%) | 100 Yr.<br>(1%) | 500 Yr.<br>(0.2%) |  |
| 12941         | Unnamed Stream (Saint<br>Croix Model #689) | 2,491                            | Downstream End above Confluence with Salt River (Saint Croix Model #675) | 702             | 915            | 1,113          | 1,298           | 1,706             |  |
| 12978         | Unnamed Stream (Saint<br>Croix Model #689) | 6,732                            | Upstream End at Limit of Study                                           | 576             | 730            | 882            | 999             | 1,265             |  |
| 12984         | Unnamed Stream (Saint<br>Croix Model #692) | 1,716                            | Downstream End above Confluence with Salt River (Saint Croix Model #675) | 703             | 916            | 1,114          | 1,299           | 1,709             |  |
| 13011         | Unnamed Stream (Saint<br>Croix Model #692) | 5,051                            | Upstream End at Limit of Study                                           | 494             | 611            | 734            | 813             | 1,000             |  |
| 13012         | Unnamed Stream (Saint<br>Croix Model #707) | 44                               | Downstream End above Confluence with Rod<br>Bay                          | 766             | 1,012          | 1,234          | 1,458           | 1,949             |  |
| 13030         | Unnamed Stream (Saint<br>Croix Model #707) | 3,197                            | Upstream End at Limit of Study                                           | 399             | 479            | 571            | 613             | 724               |  |
| 13031         | Unnamed Stream (Saint<br>Croix Model #712) | 31                               | Downstream End above Confluence with Caribbean Sea                       | 993             | 1,362          | 1,675          | 2,057           | 2,888             |  |
| 13073         | Unnamed Stream (Saint<br>Croix Model #712) | 8,077                            | Upstream End at Limit of Study                                           | 476             | 585            | 703            | 774             | 945               |  |
| 13074         | Unnamed Stream (Saint<br>Croix Model #719) | 51                               | Downstream End above Confluence with Caribbean Sea                       | 493             | 610            | 733            | 812             | 998               |  |
| 13099         | Unnamed Stream (Saint<br>Croix Model #719) | 2,494                            | Upstream End at Limit of Study                                           | 372             | 441            | 526            | 558             | 650               |  |
| 13101         | Unnamed Stream (Saint<br>Croix Model #729) | 1,811                            | Downstream End above Confluence with Chenay Bay                          | 1,224           | 1,730          | 2,144          | 2,715           | 3,967             |  |
| 13149         | Unnamed Stream (Saint<br>Croix Model #729) | 13,640                           | Upstream End at Limit of Study                                           | 365             | 432            | 515            | 545             | 633               |  |

| Cross         |                                            | Stream Station Leastin Description |                                                      | Discharge in Cubic Feet Per Second |                |                |                 |                   |  |  |  |
|---------------|--------------------------------------------|------------------------------------|------------------------------------------------------|------------------------------------|----------------|----------------|-----------------|-------------------|--|--|--|
| Section<br>ID | Flooding Source Name                       | (feet above<br>mouth)              | feet above                                           |                                    | 25 Yr.<br>(4%) | 50 Yr.<br>(2%) | 100 Yr.<br>(1%) | 500 Yr.<br>(0.2%) |  |  |  |
| 13150         | Unnamed Stream (Saint<br>Croix Model #740) | 47                                 | Downstream End above Confluence with Chenay Bay      | 981                                | 1,342          | 1,651          | 2,023           | 2,835             |  |  |  |
| 13184         | Unnamed Stream (Saint<br>Croix Model #740) | 6,298                              | Upstream End at Limit of Study                       | 396                                | 475            | 567            | 608             | 717               |  |  |  |
| 13185         | Unnamed Stream (Saint<br>Croix Model #748) | 57                                 | Downstream End above Confluence with Caribbean Sea   | 481                                | 593            | 713            | 786             | 962               |  |  |  |
| 13206         | Unnamed Stream (Saint<br>Croix Model #748) | 2,189                              | Upstream End at Limit of Study                       | 367                                | 435            | 518            | 549             | 638               |  |  |  |
| 13207         | Unnamed Stream (Saint<br>Croix Model #756) | 3,236                              | Downstream End above Confluence with Coakley Bay     | 542                                | 679            | 819            | 920             | 1,151             |  |  |  |
| 13218         | Unnamed Stream (Saint<br>Croix Model #756) | 5,255                              | Upstream End at Limit of Study                       | 400                                | 480            | 573            | 615             | 726               |  |  |  |
| 13219         | Unnamed Stream (Saint<br>Croix Model #757) | 14                                 | Downstream End above Confluence with Coakley Bay     | 541                                | 679            | 818            | 918             | 1,149             |  |  |  |
| 13234         | Unnamed Stream (Saint<br>Croix Model #757) | 2,893                              | Upstream End at Limit of Study                       | 359                                | 425            | 505            | 533             | 618               |  |  |  |
| 13235         | Unnamed Stream (Saint<br>Croix Model #763) | 30                                 | Downstream End above Confluence with Caribbean Sea   | 833                                | 1,113          | 1,362          | 1,629           | 2,213             |  |  |  |
| 13263         | Unnamed Stream (Saint<br>Croix Model #763) | 5,605                              | Upstream End at Limit of Study                       | 427                                | 517            | 618            | 670             | 802               |  |  |  |
| 13264         | Unnamed Stream (Saint<br>Croix Model #770) | 86                                 | Downstream End above Confluence with Yellowcliff Bay | 1,152                              | 1,614          | 1,996          | 2,504           | 3,618             |  |  |  |
| 13307         | Unnamed Stream (Saint<br>Croix Model #770) | 8,289                              | Upstream End at Limit of Study                       | 438                                | 532            | 637            | 693             | 833               |  |  |  |

| Cross         | Flooding Source Name                       | Stream  ne Station Location Description (feet above mouth) | Discharge in Cubic Feet Per Second                  |                 |                |                |                 |                   |  |
|---------------|--------------------------------------------|------------------------------------------------------------|-----------------------------------------------------|-----------------|----------------|----------------|-----------------|-------------------|--|
| Section<br>ID |                                            |                                                            | Location Description                                | 10 Yr.<br>(10%) | 25 Yr.<br>(4%) | 50 Yr.<br>(2%) | 100 Yr.<br>(1%) | 500 Yr.<br>(0.2%) |  |
| 13308         | Unnamed Stream (Saint<br>Croix Model #782) | 50                                                         | Downstream End above Confluence with Tague Bay      | 814             | 1,084          | 1,325          | 1,579           | 2,136             |  |
| 13332         | Unnamed Stream (Saint<br>Croix Model #782) | 3,437                                                      | Upstream End at Limit of Study                      | 362             | 428            | 510            | 539             | 625               |  |
| 13333         | Unnamed Stream (Saint<br>Croix Model #793) | 26                                                         | Downstream End above Confluence with Knight Bay     | 528             | 660            | 795            | 889             | 1,107             |  |
| 13341         | Unnamed Stream (Saint<br>Croix Model #793) | 1,660                                                      | Upstream End at Limit of Study                      | 366             | 434            | 516            | 547             | 635               |  |
| 13342         | Unnamed Stream (Saint<br>Croix Model #795) | 50                                                         | Downstream End above Confluence with Caribbean Sea  | 714             | 933            | 1,135          | 1,327           | 1,751             |  |
| 13357         | Unnamed Stream (Saint<br>Croix Model #795) | 2,146                                                      | Upstream End at Limit of Study                      | 411             | 495            | 592            | 638             | 758               |  |
| 20001         | Guinea Gut (Saint John<br>Model #5)        | 143                                                        | Downstream End above Confluence with Great Cruz Bay | 889             | 1,651          | 2,448          | 3,470           | 6,937             |  |
| 20044         | Guinea Gut (Saint John<br>Model #5)        | 5,258                                                      | Upstream End at Limit of Study                      | 454             | 831            | 1,216          | 1,697           | 3,257             |  |
| 20050         | Unnamed Stream (Saint<br>John Model #7)    | 1,697                                                      | Downstream End above Confluence with Great Cruz Bay | 269             | 487            | 704            | 972             | 1,806             |  |
| 20067         | Unnamed Stream (Saint<br>John Model #7)    | 2,974                                                      | Upstream End at Limit of Study                      | 200             | 360            | 517            | 709             | 1,294             |  |
| 20068         | Battery Gut (Saint John<br>Model #16)      | 9                                                          | Downstream End above Confluence with Fish Bay       | 2,890           | 5,508          | 8,372          | 12,189          | 26,174            |  |
| 20114         | Battery Gut (Saint John<br>Model #16)      | 6,161                                                      | Upstream End at Limit of Study                      | 1,047           | 1,951          | 2,902          | 4,129           | 8,336             |  |

| Cross         | Flooding Source Name                     | Stream Station     | Discharge in Cubic Feet Per Second                                         |                 |                |                |                 |                   |  |
|---------------|------------------------------------------|--------------------|----------------------------------------------------------------------------|-----------------|----------------|----------------|-----------------|-------------------|--|
| Section<br>ID |                                          | (feet above mouth) | Location Description                                                       | 10 Yr.<br>(10%) | 25 Yr.<br>(4%) | 50 Yr.<br>(2%) | 100 Yr.<br>(1%) | 500 Yr.<br>(0.2%) |  |
| 20118         | Fish Bay Gut (Saint John<br>Model #21)   | 2,979              | Downstream End above Confluence with Battery Gut (Saint John Model #16)    | 644             | 1,187          | 1,748          | 2,460           | 4,822             |  |
| 20162         | Fish Bay Gut (Saint John<br>Model #21)   | 6,047              | Upstream End at Limit of Study                                             | 577             | 1,061          | 1,559          | 2,188           | 4,260             |  |
| 20163         | Unnamed Stream (Saint<br>John Model #29) | 21                 | Downstream End above Confluence with Fish Bay                              | 883             | 1,640          | 2,431          | 3,446           | 6,885             |  |
| 20192         | Unnamed Stream (Saint<br>John Model #29) | 5,299              | Upstream End at Limit of Study                                             | 232             | 418            | 603            | 829             | 1,528             |  |
| 20193         | Unnamed Stream (Saint John Model #36)    | 212                | Downstream End above Confluence with Turner Bay                            | 327             | 595            | 864            | 1,197           | 2,252             |  |
| 20213         | Unnamed Stream (Saint<br>John Model #36) | 2,646              | Upstream End at Limit of Study                                             | 96              | 169            | 239            | 322             | 562               |  |
| 20214         | Unnamed Stream (Saint<br>John Model #38) | 0                  | Downstream End at Confluence with Cruz Bay                                 | 573             | 1,054          | 1,549          | 2,173           | 4,230             |  |
| 20240         | Unnamed Stream (Saint<br>John Model #38) | 2,348              | Upstream End at Limit of Study                                             | 299             | 542            | 786            | 1,086           | 2,033             |  |
| 20246         | Unnamed Stream (Saint<br>John Model #39) | 649                | Downstream End above Confluence with Unnamed Stream (Saint John Model #38) | 144             | 256            | 365            | 497             | 889               |  |
| 20254         | Unnamed Stream (Saint<br>John Model #39) | 1,380              | Upstream End at Limit of Study                                             | 112             | 198            | 282            | 381             | 671               |  |
| 20255         | Cob Gut (Saint John<br>Model #46)        | 78                 | Downstream End above Confluence with Grootpan Bay                          | 992             | 1,846          | 2,743          | 3,898           | 7,844             |  |
| 20322         | Cob Gut (Saint John<br>Model #46)        | 6,923              | Upstream End at Limit of Study                                             | 229             | 413            | 595            | 818             | 1,505             |  |

| Cross         |                                          | Stream Station     | Disc                                                                       | harge in        | Cubic Fe       | et Per Se      | cond            |                   |
|---------------|------------------------------------------|--------------------|----------------------------------------------------------------------------|-----------------|----------------|----------------|-----------------|-------------------|
| Section<br>ID | Flooding Source Name                     | (feet above mouth) | Location Description                                                       | 10 Yr.<br>(10%) | 25 Yr.<br>(4%) | 50 Yr.<br>(2%) | 100 Yr.<br>(1%) | 500 Yr.<br>(0.2%) |
| 20323         | Unnamed Stream (Saint<br>John Model #58) | 51                 | Downstream End above Confluence with Reef Bay                              | 2,966           | 5,656          | 8,601          | 12,530          | 26,950            |
| 20378         | Unnamed Stream (Saint<br>John Model #58) | 10,343             | Upstream End at Limit of Study                                             | 118             | 210            | 298            | 404             | 714               |
| 20384         | Unnamed Stream (Saint<br>John Model #61) | 4,756              | Downstream End above Confluence with Unnamed Stream (Saint John Model #58) | 476             | 873            | 1,277          | 1,785           | 3,436             |
| 20398         | Unnamed Stream (Saint<br>John Model #61) | 6,074              | Upstream End at Limit of Study                                             | 332             | 603            | 875            | 1,213           | 2,285             |
| 20403         | Reef Bay Gut (Saint John<br>Model #64)   | 3,878              | Downstream End above Confluence with Unnamed Stream (Saint John Model #58) | 931             | 1,731          | 2,569          | 3,646           | 7,309             |
| 20530         | Reef Bay Gut (Saint John<br>Model #64)   | 10,319             | Upstream End at Limit of Study                                             | 179             | 320            | 459            | 628             | 1,139             |
| 20531         | Unnamed Stream (Saint<br>John Model #72) | 34                 | Downstream End above Confluence with Great Lameshur Bay                    | 421             | 769            | 1,122          | 1,564           | 2,987             |
| 20578         | Unnamed Stream (Saint<br>John Model #72) | 3,023              | Upstream End at Limit of Study                                             | 132             | 235            | 334            | 454             | 808               |
| 20579         | Unnamed Stream (Saint<br>John Model #77) | 0                  | Downstream End at Confluence with Great<br>Lameshur Bay                    | 976             | 1,816          | 2,698          | 3,832           | 7,704             |
| 20681         | Unnamed Stream (Saint<br>John Model #77) | 6,744              | Upstream End at Limit of Study                                             | 99              | 176            | 249            | 336             | 587               |
| 20682         | Unnamed Stream (Saint<br>John Model #84) | 0                  | Downstream End at Confluence with Little<br>Lameshur Bay                   | 863             | 1,602          | 2,374          | 3,363           | 6,710             |
| 20735         | Unnamed Stream (Saint<br>John Model #84) | 4,652              | Upstream End at Limit of Study                                             | 155             | 276            | 395            | 538             | 967               |

| Cross         |                                           | Stream Name Station Location Description (feet above mouth) | Disc                                                                        | harge in        | Cubic Fe       | et Per Se      | cond            |                   |
|---------------|-------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------|----------------|----------------|-----------------|-------------------|
| Section<br>ID | Flooding Source Name                      |                                                             | Location Description                                                        | 10 Yr.<br>(10%) | 25 Yr.<br>(4%) | 50 Yr.<br>(2%) | 100 Yr.<br>(1%) | 500 Yr.<br>(0.2%) |
| 20740         | Unnamed Stream (Saint<br>John Model #86)  | 954                                                         | Downstream End above Confluence with Unnamed Stream (Saint John Model #84)  | 248             | 448            | 646            | 890             | 1,646             |
| 20767         | Unnamed Stream (Saint<br>John Model #86)  | 2,928                                                       | Upstream End at Limit of Study                                              | 136             | 243            | 346            | 470             | 838               |
| 20768         | Unnamed Stream (Saint<br>John Model #116) | 17                                                          | Downstream End above Confluence with Coral Harbor                           | 2,775           | 5,284          | 8,024          | 11,672          | 25,002            |
| 20796         | Unnamed Stream (Saint<br>John Model #116) | 7,773                                                       | Upstream End at Limit of Study                                              | 399             | 728            | 1,062          | 1,478           | 2,815             |
| 20802         | Unnamed Stream (Saint<br>John Model #123) | 4,950                                                       | Downstream End above Confluence with Unnamed Stream (Saint John Model #116) | 797             | 1,476          | 2,183          | 3,088           | 6,131             |
| 20836         | Unnamed Stream (Saint<br>John Model #123) | 7,912                                                       | Upstream End at Limit of Study                                              | 96              | 169            | 239            | 322             | 562               |
| 20843         | Coral Bay Gut (Saint<br>John Model #127)  | 3,978                                                       | Downstream End above Confluence with Unnamed Stream (Saint John Model #116) | 405             | 738            | 1,077          | 1,500           | 2,858             |
| 20857         | Coral Bay Gut (Saint<br>John Model #127)  | 6,011                                                       | Upstream End at Limit of Study                                              | 107             | 190            | 270            | 365             | 642               |
| 20858         | Unnamed Stream (Saint<br>John Model #190) | 0                                                           | Downstream End at Confluence with Earle<br>Pond at Brown Bay                | 555             | 1,019          | 1,497          | 2,099           | 4,077             |
| 20875         | Unnamed Stream (Saint<br>John Model #190) | 2,623                                                       | Upstream End at Limit of Study                                              | 194             | 349            | 501            | 686             | 1,249             |
| 30001         | Unnamed Stream (Saint<br>Thomas Model #8) | 0                                                           | Downstream End at Confluence with Fortuna<br>Bay                            | 762             | 1,410          | 2,084          | 2,944           | 5,830             |
| 30051         | Unnamed Stream (Saint<br>Thomas Model #8) | 4,076                                                       | Upstream End at Limit of Study                                              | 140             | 250            | 357            | 486             | 868               |

| Cross         |                                            | Stream Station Leastion Description | Disc                                                                        | harge in        | Cubic Fe       | et Per Se      | cond            |                   |
|---------------|--------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------|-----------------|----------------|----------------|-----------------|-------------------|
| Section<br>ID | Flooding Source Name                       | (feet above<br>mouth)               | Location Description                                                        | 10 Yr.<br>(10%) | 25 Yr.<br>(4%) | 50 Yr.<br>(2%) | 100 Yr.<br>(1%) | 500 Yr.<br>(0.2%) |
| 30057         | Unnamed Stream (Saint<br>Thomas Model #9)  | 562                                 | Downstream End above Confluence with Unnamed Stream (Saint Thomas Model #8) | 150             | 267            | 382            | 520             | 933               |
| 30088         | Unnamed Stream (Saint<br>Thomas Model #9)  | 1,849                               | Upstream End at Limit of Study                                              | 97              | 172            | 244            | 329             | 575               |
| 30089         | Unnamed Stream (Saint<br>Thomas Model #14) | 7                                   | Downstream End above Confluence with Little Coculus Bay                     | 109             | 193            | 273            | 370             | 650               |
| 30108         | Unnamed Stream (Saint<br>Thomas Model #14) | 1,295                               | Upstream End at Limit of Study                                              | 94              | 167            | 236            | 318             | 554               |
| 30109         | Unnamed Stream (Saint<br>Thomas Model #16) | 10                                  | Downstream End above Confluence with Frenchman Bay                          | 396             | 722            | 1,052          | 1,464           | 2,786             |
| 30143         | Unnamed Stream (Saint<br>Thomas Model #16) | 2,394                               | Upstream End at Limit of Study                                              | 233             | 420            | 605            | 832             | 1,532             |
| 30144         | Unnamed Stream (Saint<br>Thomas Model #23) | 8                                   | Downstream End above Confluence with Morningstar Bay                        | 634             | 1,169          | 1,721          | 2,421           | 4,742             |
| 30215         | Unnamed Stream (Saint<br>Thomas Model #23) | 4,255                               | Upstream End at Limit of Study                                              | 96              | 170            | 241            | 324             | 567               |
| 30216         | Unnamed Stream (Saint<br>Thomas Model #25) | 0                                   | Downstream End at Confluence with Bolongo<br>Bay                            | 547             | 1,006          | 1,476          | 2,070           | 4,018             |
| 30264         | Unnamed Stream (Saint<br>Thomas Model #25) | 4,192                               | Upstream End at Limit of Study                                              | 97              | 172            | 244            | 329             | 575               |
| 30265         | Unnamed Stream (Saint<br>Thomas Model #32) | 325                                 | Downstream End above Limit of Study                                         | 577             | 1,061          | 1,559          | 2,188           | 4,260             |
| 30314         | Unnamed Stream (Saint<br>Thomas Model #32) | 3,242                               | Upstream End at Limit of Study                                              | 131             | 233            | 333            | 451             | 803               |

| Cross         |                                            | Stream      | Station Location Description                                                 |     | Discharge in Cubic Feet Per Second |                |                 |                   |  |  |
|---------------|--------------------------------------------|-------------|------------------------------------------------------------------------------|-----|------------------------------------|----------------|-----------------|-------------------|--|--|
| Section<br>ID | Flooding Source Name                       | (feet above |                                                                              |     | 25 Yr.<br>(4%)                     | 50 Yr.<br>(2%) | 100 Yr.<br>(1%) | 500 Yr.<br>(0.2%) |  |  |
| 30321         | Unnamed Stream (Saint<br>Thomas Model #33) | 365         | Downstream End above Confluence with Unnamed Stream (Saint Thomas Model #32) | 259 | 468                                | 676            | 932             | 1,728             |  |  |
| 30336         | Unnamed Stream (Saint<br>Thomas Model #33) | 1,160       | Upstream End at Limit of Study                                               | 183 | 328                                | 471            | 644             | 1,170             |  |  |
| 30337         | Unnamed Stream (Saint<br>Thomas Model #35) | 231         | Downstream End above Limit of Study                                          | 343 | 623                                | 905            | 1,256           | 2,369             |  |  |
| 30368         | Unnamed Stream (Saint<br>Thomas Model #35) | 2,102       | Upstream End at Limit of Study                                               | 135 | 240                                | 342            | 465             | 829               |  |  |
| 30369         | Unnamed Stream (Saint<br>Thomas Model #39) | 0           | Downstream End at Limit of Study                                             | 493 | 904                                | 1,324          | 1,852           | 3,572             |  |  |
| 30407         | Unnamed Stream (Saint<br>Thomas Model #39) | 2,249       | Upstream End at Limit of Study                                               | 281 | 508                                | 736            | 1,016           | 1,894             |  |  |
| 30408         | Unnamed Stream (Saint<br>Thomas Model #49) | 913         | Downstream End above Limit of Study                                          | 686 | 1,267                              | 1,869          | 2,634           | 5,183             |  |  |
| 30452         | Unnamed Stream (Saint<br>Thomas Model #49) | 4,320       | Upstream End at Limit of Study                                               | 336 | 611                                | 887            | 1,230           | 2,317             |  |  |
| 30453         | Unnamed Stream (Saint Thomas Model #60)    | 889         | Downstream End above Limit of Study                                          | 473 | 867                                | 1,269          | 1,773           | 3,412             |  |  |
| 30522         | Unnamed Stream (Saint<br>Thomas Model #60) | 4,845       | Upstream End at Limit of Study                                               | 94  | 167                                | 236            | 318             | 554               |  |  |
| 30523         | Unnamed Stream (Saint<br>Thomas Model #69) | 7           | Downstream End above Confluence with Bordeaux Bay                            | 979 | 1,821                              | 2,706          | 3,844           | 7,730             |  |  |
| 30560         | Unnamed Stream (Saint<br>Thomas Model #69) | 3,459       | Upstream End at Limit of Study                                               | 205 | 368                                | 529            | 725             | 1,325             |  |  |

| Cross         |                                             | Stream                           |                                                                               |                 | harge in       | Cubic Fe       | et Per Se       | cond              |
|---------------|---------------------------------------------|----------------------------------|-------------------------------------------------------------------------------|-----------------|----------------|----------------|-----------------|-------------------|
| Section<br>ID | Flooding Source Name                        | Station<br>(feet above<br>mouth) | Location Description                                                          | 10 Yr.<br>(10%) | 25 Yr.<br>(4%) | 50 Yr.<br>(2%) | 100 Yr.<br>(1%) | 500 Yr.<br>(0.2%) |
| 30566         | Unnamed Stream (Saint<br>Thomas Model #70)  | 787                              | Downstream End above Confluence with Unnamed Stream (Saint Thomas Model #69)  | 191             | 343            | 492            | 674             | 1,227             |
| 30597         | Unnamed Stream (Saint<br>Thomas Model #70)  | 1,602                            | Upstream End at Limit of Study                                                | 134             | 238            | 339            | 460             | 820               |
| 30604         | Unnamed Stream (Saint<br>Thomas Model #71)  | 868                              | Downstream End above Confluence with Unnamed Stream (Saint Thomas Model #69)  | 287             | 520            | 752            | 1,040           | 1,940             |
| 30628         | Unnamed Stream (Saint<br>Thomas Model #71)  | 2,103                            | Upstream End at Limit of Study                                                | 220             | 397            | 572            | 785             | 1,442             |
| 30638         | Unnamed Stream (Saint<br>Thomas Model #72)  | 1,486                            | Downstream End above Confluence with Unnamed Stream (Saint Thomas Model #69)  | 149             | 266            | 380            | 518             | 928               |
| 30661         | Unnamed Stream (Saint<br>Thomas Model #72)  | 2,836                            | Upstream End at Limit of Study                                                | 101             | 178            | 252            | 340             | 596               |
| 30662         | Unnamed Stream (Saint<br>Thomas Model #79)  | 267                              | Downstream End above Confluence with Mangrove Lagoon                          | 1,147           | 2,142          | 3,193          | 4,552           | 9,241             |
| 30756         | Unnamed Stream (Saint<br>Thomas Model #79)  | 6,909                            | Upstream End at Limit of Study                                                | 93              | 164            | 233            | 313             | 546               |
| 30757         | Unnamed Stream (Saint<br>Thomas Model #87)  | 1,168                            | Downstream End above Limit of Study                                           | 606             | 1,116          | 1,641          | 2,306           | 4,503             |
| 30797         | Unnamed Stream (Saint<br>Thomas Model #87)  | 3,776                            | Upstream End at Limit of Study                                                | 171             | 306            | 438            | 598             | 1,081             |
| 30803         | Unnamed Stream (Saint<br>Thomas Model #103) | 5,626                            | Downstream End above Confluence with Turpentine Run (Saint Thomas Model #109) | 1,062           | 1,981          | 2,948          | 4,195           | 8,477             |
| 30844         | Unnamed Stream (Saint<br>Thomas Model #103) | 11,059                           | Upstream End at Limit of Study                                                | 153             | 273            | 390            | 531             | 954               |

| Cross         |                                             |                    |                                                                               |                 |                | Cubic Fe       | et Per Se       | cond              |
|---------------|---------------------------------------------|--------------------|-------------------------------------------------------------------------------|-----------------|----------------|----------------|-----------------|-------------------|
| Section<br>ID | Flooding Source Name                        | (feet above mouth) | Location Description                                                          | 10 Yr.<br>(10%) | 25 Yr.<br>(4%) | 50 Yr.<br>(2%) | 100 Yr.<br>(1%) | 500 Yr.<br>(0.2%) |
| 30845         | Turpentine Run (Saint<br>Thomas Model #109) | 470                | Downstream End above Confluence with Mangrove Lagoon                          | 5,559           | 10,747         | 16,560         | 24,470          | 54,676            |
| 30909         | Turpentine Run (Saint<br>Thomas Model #109) | 16,653             | Upstream End at Limit of Study                                                | 358             | 651            | 947            | 1,315           | 2,487             |
| 30914         | Unnamed Stream (Saint<br>Thomas Model #119) | 5,500              | Downstream End above Confluence with Turpentine Run (Saint Thomas Model #109) | 1,568           | 2,948          | 4,423          | 6,352           | 13,142            |
| 30971         | Unnamed Stream (Saint<br>Thomas Model #119) | 11,416             | Upstream End at Limit of Study                                                | 146             | 261            | 372            | 506             | 907               |
| 30980         | Unnamed Stream (Saint<br>Thomas Model #132) | 5,597              | Downstream End above Confluence with Turpentine Run (Saint Thomas Model #109) | 534             | 981            | 1,440          | 2,017           | 3,910             |
| 31007         | Unnamed Stream (Saint<br>Thomas Model #132) | 8,151              | Upstream End at Limit of Study                                                | 260             | 470            | 679            | 937             | 1,738             |
| 31008         | Unnamed Stream (Saint<br>Thomas Model #138) | 131                | Downstream End above Limit of Study                                           | 647             | 1,193          | 1,757          | 2,472           | 4,847             |
| 31043         | Unnamed Stream (Saint<br>Thomas Model #138) | 2,760              | Upstream End at Limit of Study                                                | 242             | 436            | 630            | 867             | 1,601             |
| 31044         | Unnamed Stream (Saint<br>Thomas Model #140) | 98                 | Downstream End above Limit of Study                                           | 433             | 792            | 1,157          | 1,614           | 3,088             |
| 31066         | Unnamed Stream (Saint<br>Thomas Model #140) | 2,136              | Upstream End at Limit of Study                                                | 209             | 377            | 542            | 743             | 1,361             |
| 31067         | Unnamed Stream (Saint<br>Thomas Model #143) | 55                 | Downstream End above Confluence with Benner Bay                               | 379             | 690            | 1,005          | 1,398           | 2,653             |
| 31111         | Unnamed Stream (Saint<br>Thomas Model #143) | 3,171              | Upstream End at Limit of Study                                                | 94              | 166            | 234            | 315             | 550               |

| Cross         |                                             |                    |                                                                               |                 | harge in       | Cubic Fe       | et Per Se       | cond              |
|---------------|---------------------------------------------|--------------------|-------------------------------------------------------------------------------|-----------------|----------------|----------------|-----------------|-------------------|
| Section<br>ID | Flooding Source Name                        | (feet above mouth) | Location Description                                                          | 10 Yr.<br>(10%) | 25 Yr.<br>(4%) | 50 Yr.<br>(2%) | 100 Yr.<br>(1%) | 500 Yr.<br>(0.2%) |
| 31112         | Unnamed Stream (Saint<br>Thomas Model #160) | 0                  | Downstream End at Confluence with Long Bay                                    | 750             | 1,388          | 2,051          | 2,896           | 5,729             |
| 31131         | Unnamed Stream (Saint<br>Thomas Model #160) | 2,361              | Upstream End at Limit of Study                                                | 117             | 207            | 295            | 399             | 705               |
| 31132         | Unnamed Stream (Saint<br>Thomas Model #164) | 0                  | Downstream End at Confluence with Benner<br>Bay                               | 995             | 1,853          | 2,753          | 3,913           | 7,876             |
| 31210         | Unnamed Stream (Saint<br>Thomas Model #164) | 6,899              | Upstream End at Limit of Study                                                | 96              | 169            | 239            | 322             | 562               |
| 31216         | Unnamed Stream (Saint<br>Thomas Model #166) | 3,254              | Downstream End above Confluence with Unnamed Stream (Saint Thomas Model #164) | 334             | 607            | 882            | 1,223           | 2,303             |
| 31249         | Unnamed Stream (Saint<br>Thomas Model #166) | 4,933              | Upstream End at Limit of Study                                                | 227             | 408            | 588            | 808             | 1,487             |
| 31250         | Unnamed Stream (Saint<br>Thomas Model #167) | 0                  | Downstream End at Confluence with Santa<br>Maria Bay                          | 457             | 837            | 1,224          | 1,709           | 3,281             |
| 31344         | Unnamed Stream (Saint<br>Thomas Model #167) | 3,238              | Upstream End at Limit of Study                                                | 116             | 205            | 291            | 395             | 697               |
| 31345         | Unnamed Stream (Saint<br>Thomas Model #177) | 0                  | Downstream End at Confluence with Santa<br>Maria Bay                          | 1,108           | 2,067          | 3,079          | 4,387           | 8,888             |
| 31482         | Unnamed Stream (Saint<br>Thomas Model #177) | 7,378              | Upstream End at Limit of Study                                                | 94              | 166            | 234            | 315             | 550               |
| 31483         | Unnamed Stream (Saint<br>Thomas Model #184) | 6                  | Downstream End above Confluence with Atlantic Ocean                           | 506             | 928            | 1,359          | 1,902           | 3,675             |
| 31523         | Unnamed Stream (Saint<br>Thomas Model #184) | 2,296              | Upstream End at Limit of Study                                                | 278             | 504            | 729            | 1,007           | 1,875             |

| Cross         |                                             | Stream<br>Station  | Ctation                                             |                 | Discharge in Cubic Feet Per Second |                |                 |                   |  |  |
|---------------|---------------------------------------------|--------------------|-----------------------------------------------------|-----------------|------------------------------------|----------------|-----------------|-------------------|--|--|
| Section<br>ID | Flooding Source Name                        | (feet above mouth) | Location Description                                | 10 Yr.<br>(10%) | 25 Yr.<br>(4%)                     | 50 Yr.<br>(2%) | 100 Yr.<br>(1%) | 500 Yr.<br>(0.2%) |  |  |
| 31524         | Unnamed Stream (Saint<br>Thomas Model #190) | 0                  | Downstream End at Confluence with Vessup<br>Bay     | 469             | 859                                | 1,257          | 1,757           | 3,378             |  |  |
| 31601         | Unnamed Stream (Saint<br>Thomas Model #190) | 4,296              | Upstream End at Limit of Study                      | 98              | 173                                | 246            | 331             | 579               |  |  |
| 31602         | Unnamed Stream (Saint<br>Thomas Model #202) | 97                 | Downstream End above Confluence with Vessup Bay     | 466             | 854                                | 1,249          | 1,745           | 3,354             |  |  |
| 31650         | Unnamed Stream (Saint<br>Thomas Model #202) | 4,491              | Upstream End at Limit of Study                      | 93              | 164                                | 233            | 313             | 546               |  |  |
| 31651         | Unnamed Stream (Saint<br>Thomas Model #204) | 28                 | Downstream End above Confluence with Atlantic Ocean | 618             | 1,139                              | 1,676          | 2,356           | 4,607             |  |  |
| 31698         | Unnamed Stream (Saint<br>Thomas Model #204) | 3,200              | Upstream End at Limit of Study                      | 238             | 429                                | 618            | 850             | 1,569             |  |  |
| 31699         | Unnamed Stream (Saint<br>Thomas Model #211) | 0                  | Downstream End at Confluence with Dorothea Bay      | 1,202           | 2,246                              | 3,352          | 4,784           | 9,739             |  |  |
| 31790         | Unnamed Stream (Saint<br>Thomas Model #211) | 5,344              | Upstream End at Limit of Study                      | 405             | 740                                | 1,079          | 1,502           | 2,863             |  |  |
| 31791         | Unnamed Stream (Saint<br>Thomas Model #215) | 75                 | Downstream End above Confluence with Magens Bay     | 719             | 1,330                              | 1,963          | 2,769           | 5,465             |  |  |
| 31806         | Unnamed Stream (Saint<br>Thomas Model #215) | 1,905              | Upstream End at Limit of Study                      | 276             | 499                                | 722            | 997             | 1,857             |  |  |
| 31807         | Unnamed Stream (Saint<br>Thomas Model #219) | 45                 | Downstream End above Confluence with Hull Bay       | 698             | 1,290                              | 1,903          | 2,682           | 5,284             |  |  |
| 31827         | Unnamed Stream (Saint<br>Thomas Model #219) | 1,430              | Upstream End at Limit of Study                      | 144             | 257                                | 367            | 499             | 894               |  |  |

| Cross Stream Station |                                             |                    | Discharge in Cubic Feet Per Second                                            |                 |                |                |                 |                   |
|----------------------|---------------------------------------------|--------------------|-------------------------------------------------------------------------------|-----------------|----------------|----------------|-----------------|-------------------|
| Section<br>ID        | Flooding Source Name                        | (feet above mouth) | Location Description                                                          | 10 Yr.<br>(10%) | 25 Yr.<br>(4%) | 50 Yr.<br>(2%) | 100 Yr.<br>(1%) | 500 Yr.<br>(0.2%) |
| 31828                | Unnamed Stream (Saint<br>Thomas Model #222) | 11                 | Downstream End above Confluence with Magens Bay                               | 521             | 956            | 1,401          | 1,962           | 3,797             |
| 31857                | Unnamed Stream (Saint<br>Thomas Model #222) | 1,589              | Upstream End at Limit of Study                                                | 163             | 292            | 418            | 570             | 1,029             |
| 31858                | Unnamed Stream (Saint<br>Thomas Model #233) | 99                 | Downstream End above Confluence with Smith Bay                                | 231             | 416            | 600            | 825             | 1,519             |
| 31887                | Unnamed Stream (Saint<br>Thomas Model #233) | 2,574              | Upstream End at Limit of Study                                                | 102             | 181            | 257            | 347             | 608               |
| 31888                | Unnamed Stream (Saint<br>Thomas Model #242) | 53                 | Downstream End above Confluence with Water Bay                                | 1,133           | 2,116          | 3,154          | 4,495           | 9,120             |
| 31940                | Unnamed Stream (Saint<br>Thomas Model #242) | 5,519              | Upstream End at Limit of Study                                                | 175             | 314            | 449            | 614             | 1,112             |
| 31946                | Unnamed Stream (Saint<br>Thomas Model #246) | 1,524              | Downstream End above Confluence with Unnamed Stream (Saint Thomas Model #242) | 227             | 408            | 588            | 808             | 1,487             |
| 31979                | Unnamed Stream (Saint<br>Thomas Model #246) | 4,152              | Upstream End at Limit of Study                                                | 114             | 202            | 287            | 388             | 684               |
| 31980                | Unnamed Stream (Saint<br>Thomas Model #264) | 6                  | Downstream End above Confluence with<br>Leeward Passage                       | 2,308           | 4,377          | 6,621          | 9,590           | 20,314            |
| 32049                | Unnamed Stream (Saint<br>Thomas Model #264) | 7,174              | Upstream End at Limit of Study                                                | 185             | 333            | 477            | 653             | 1,187             |
| 32056                | Unnamed Stream (Saint<br>Thomas Model #270) | 1,662              | Downstream End above Confluence with Unnamed Stream (Saint Thomas Model #264) | 698             | 1,289          | 1,901          | 2,680           | 5,279             |
| 32105                | Unnamed Stream (Saint<br>Thomas Model #270) | 5,136              | Upstream End at Limit of Study                                                | 189             | 340            | 487            | 667             | 1,214             |

#### 3.1.3 Hydraulic Analyses

The scope for the hydraulic analyses was to develop non-regulatory BLE flood hazard information for approximately 130 miles of existing CNMS stream mileage, as well as an additional 25 miles of unmapped areas determined after project initiation. A stream network was developed by leveraging FEMA's CNMS centerlines and NHD high-resolution data for unmapped areas. **Figure 1** provides spatial location of the BLE analysis of 161 miles. **Appendix A** provides the list of streams where the hydraulic analysis was conducted, along with HEC-RAS model naming convention. Stream centerlines were adjusted to better fit the LiDAR data from the original source of CNMS database or NHD stream centerlines.

Steady flow HEC-RAS hydraulic models were developed for the 10-percent, 4-percent, 2-percent, 1-percent, and 0.2-percent annual chance flood events. Model geometry and mapping were developed automatically using GIS tools and scripts and then refined as needed. A common modeling practice that was not considered in this analysis was the inclusion of field survey data for bridges, culverts, levees, and split flow analysis. The models were developed for the 1-percent and 0.2-percent annual chance flood events. They were not refined for the more frequent, lower flow events. These are included for informational purposes only.

A single conveyance area was used for each cross-section, e.g. bank stations were set at the outer limits of the cross-section. This method has been found to give good results, especially when Manning's n-values were set based on land-use coverage and wetted area.

No supercritical flows were permitted in the models, so the lowest possible water surface elevation for any cross-section was critical depth.

After automated hydraulic models were developed, the floodplains and cross-sections were visually reviewed. Cross sections with unusual changes in hydraulic parameters (water surface and energy grade slopes, water surface elevations, and velocity) were examined. In numerous cases, cross-sections were deleted or modified, to improve the quality of the hydraulic model. Ineffective flow areas were added where appropriate.

#### 3.1.3.1 Discharges

Discharges for all events were imported into HEC-RAS using the final flow grids described in Section 3.1.2 and automated tools. A flow rate was assigned for each cross-section location.

#### 3.1.3.2 **Boundary Conditions**

The downstream boundary condition for almost all models was set at critical depth. At confluences, the tributary models were extended downstream to follow the main channel that they join. Generally, five cross sections, identical to the main stem sections, were modeled in the extended area. The tributary discharge was applied to these sections. This process allowed for a smooth transition in water surface elevation and thus floodplains between tributaries and main channels. In the confluence area and the downstream portion of the tributary, the higher water surface of the main stem is used to develop the water surface grids and floodplains, negating any inaccuracies associated with the critical depth boundary condition on the tributary stream.

"Normal" depth is typically used in hydraulic models as the downstream boundary condition. However, the use of normal depth requires an estimate of the "normal slope," which depends on

the method used to estimate it. Fully automated methods to estimate the normal slope for large numbers of reaches are not completely reliable. In particular, there is a risk that the slope may be estimated too low, which can cause a significant and unrealistic backwater conditions at the start of the model, which may perpetuate for a long distance upstream. When critical depth is used, the models will typically stabilize to a "normal" depth within just a few cross-sections.

#### 3.1.3.3 Cross Sections

Although some cross sections were edited manually, cross section placement was primarily automated. Cross sections were placed perpendicular to the direction of flow. Cross section spacing was typically at 200 feet or less. Cross section geometries were obtained by overlaying the cross-section on the DEM topography.

After automated placement, a series of checks was performed to look for unusual changes in water surface elevation, slope, or velocity between cross-sections for the water surface profile of the 1-percent plus annual chance exceedance event. Places flagged as exhibiting unusual behavior were examined, and cross-sections were sometimes modified (or deleted) in these areas. This process resulted in the final cross-sections location and orientation.

There is a single HEC-RAS geometry that is used for all flow events (i.e., the same cross sections are used to model all events).

#### 3.1.3.4 Ineffective Areas

Ineffective flow limits were added to account for non-conveyance areas and flow contraction (1:1 ratio) and expansion (2-3: 1 ratio). The ineffective flow locations were identified based on the 1-percent and 0.2-percent annual chance events. The same ineffective flow limits were applied to all events.

## 3.1.3.5 Channel Roughness Values

Manning's n values were assigned to each class in the International Institute of Tropical Forestry land cover for the US Virgin Islands (Kennaway et al., 2008). The correlation between land use codes and the Manning's n-values are provided in **Appendix B**. For each model cross-section, a single n-value was computed by compositing the land cover Manning's n values, using the Lotter method (Chow, 1959, p. 136-137), along the portion of the cross section that was wetted by the 1-percent annual chance flow. These composite n-values were then used for all other event simulations. If the Manning's n value varied significantly at adjacent cross section, aerial imagery was used to check the reasonableness and adjustments were made where appropriate.

#### 3.1.3.6 Structures

Detailed bridge and culvert data were not available for the islands. To be conservative, elevated roadways were modeled as weir flow cross sections.

#### 3.1.3.7 Expansion and Contraction

Default contraction and expansion coefficients (0.1 and 0.3) were used.

#### 3.1.3.8 Special Issues

Flows were not decreased due to model breakouts, nor were models modified to take them into account.

Where possible, the streamlines were extended to the coast. However, if the stream was not defined in the LiDAR near the coast, the streamline was terminated based on the topography. One-dimension modeling was deemed inappropriate downstream of these locations.

Some streams turned into perched drainage ditches that could not convey or contain the 1-percent annual chance discharge. The streamlines were modified as appropriate to follow the main flow path rather than the drainage ditch.

A polygon shapefile identifying hydraulic model issues and comments was provided with the model deliverables.

## 3.1.4 Floodplain Mapping

Floodplains were generated for the 1-percent and 0.2-percent annual chance exceedance events for the hydraulic model reaches. **Appendix A** provides the list of the streams where the floodplains were developed. These floodplains were utilized to determine if the hydraulic model results looked reasonable, and if the models needed adjustment.

The floodplains were based on water surfaces interpolated from the hydraulic model crosssections. In most locations where flow containment was lost at the limits of the models, backwater conditions were considered and the floodplains adjusted with an automated post-processing step to include additional backwater areas. **Figure 5** shows backwater that was added beyond the limits of the hydraulic model. **Figure 6** shows an example of backwater that required additional area because the water surface elevations extend upstream beyond the upstream limits of most models.

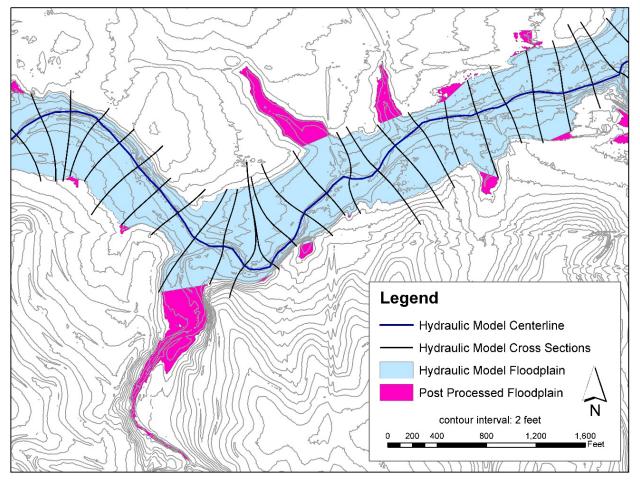



Figure 5: Post Processed Floodplain

The post processing of floodplains adds backwater areas along a modeled reach that would be flooded but were not reflected in the hydraulic model; typically; these occur as small tributaries join a larger reach

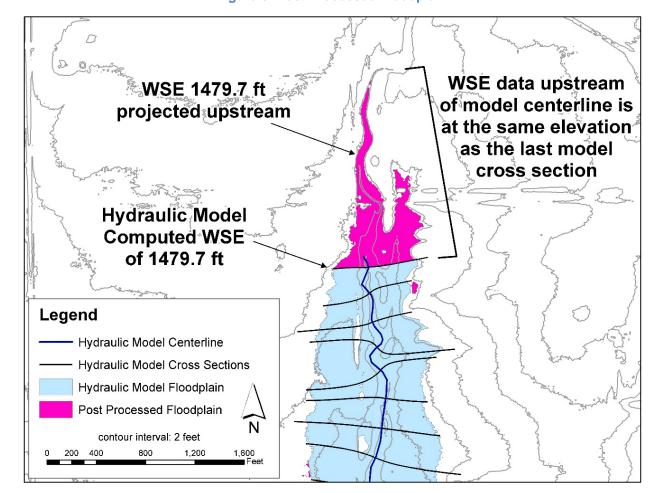



Figure 6: Post Processed Floodplain

The post processing of floodplains also adds backwater areas upstream of the hydraulic model, these areas have the projected water surface from the most upstream cross section.

For locations where the models overlap (e.g. at confluences), the highest water surface elevation across all models dominated and resulted in the largest delineated floodplain by definition.

#### 3.1.5 1-Percent Riverine Floodplain Product Limitations / Assumptions

The 1-percent flood hazard data produced by this effort should provide a useful resource in support of residential areas subject to riverine hazards within the 1-percent floodplain. The data were subject to internal team and independent review to identify and correct issues and ensure overall product quality. The product is subject to the following limitations/assumptions due to inherent errors in the data resources and the production approach:

- 1. Hydrologic Analyses
  - The recording of the peak discharges at stream gages was interrupted by gage failures during Hurricanes Irma and Maria. USGS is currently working to develop estimates

using all available data. Once the USGS estimates are published, the stream gage analyses may produce different results than those estimated by this study.

## 2. Hydraulic Analyses

- Underwater cross sections are not based on a ground survey, which may result in higher channel invert elevations.
- Channel bank stations were set at the outer limit of cross sections. The high flow channel is not identified in the cross section geometry used by the hydraulic model. However, the significant adverse effects of this assumption are mitigated to some extent by the use of single composite Manning's roughness coefficient.
- Split flows were not modeled separately.
- Detailed bridge and culvert data were not available for the islands. To be conservative, elevated roadways were modeled as weir flow cross sections.
- 3. Floodplain Delineation, Flood Elevation Labeling, and Tie-in with Coastal Floodplain
  - FIRM-type Base Flood Elevations (BFEs) were not developed. Modeled cross sections were clipped to the floodplain boundary extents wherever possible, and used as proxies to represent the water surface elevations.
  - Minimal cleanup of floodplain mapping was performed based on visual inspection.
  - An additional deliverable termed "BFE proxy cross sections" was created to provide computed water surface information from the 1-percent annual chance flood profile in a user-friendly format. From the hydraulic model cross sections, a processed version of cross sections was created that removed overlapping cross sections. In areas with overlapping cross sections from multiple models the cross sections with the most representative extents and water surface elevation (most commonly the higher water surface elevations) were left in place. Occasionally water surface elevations were computed to decrease in the upstream direction; in these cases cross sections with decreasing upstream flood elevations were always removed.

# 3.2 Coastal Advisory Data Development

Final coastal advisory data development deliverables include GIS polygon shapefiles representing the storm-induced erosion, including areas identified from the erosion analysis supporting the 1-percent wave hazard modeling as well as the visual analysis of the post-storm imagery.

These products are intended for digital delivery and dissemination for desktop GIS and/or Web-GIS platforms. The following sections provide information on data sources and limitations, production procedures, and guidance on usability for each of the coastal advisory data deliverables.

## 3.2.1 Terrain Processing

Newly acquired high resolution topographic LiDAR data was obtained from NOAA in the Virgin Islands Vertical Datum of 2009 (VIVD09) vertical datum. The newly updated topographic DEM surface was used as the basis of all subsequent analyses.

#### 3.2.1.1 Coordinate Systems and Unit Conversions

The data source used for the updated topographic DEM was the new 2013 NOAA topographic LIDAR dataset for the U.S. Virgin Islands. This data was provided via the NOAA Digital Coast Data Portal in a different coordinate system and units than those used in this project. Therefore, the source data was re-projected, re-sampled, and converted into the target coordinate system and units. Coordinate system re-projections were carried out using the ESRI Project Raster tool, while conversions from meters to feet were performed using the standard definition of 1 meter being equal to exactly 3.28084 feet. The specifics of the source data and target coordinate systems and units can be seen in **Table 3-8**.

Table 3-8: Resolution, Vertical Datum, and Coordinate Systems Associated with the Existing Study Data, New Data Source, and Final Topographic DEM

| Raster Data         | Resolution            | Vertical Datum                | Coordinate System                                                  |
|---------------------|-----------------------|-------------------------------|--------------------------------------------------------------------|
| Existing Study      | 25 feet               | feet, Local Mean<br>Sea Level | NAD_1983_StatePlane_Puerto_Rico_Virgin_<br>Islands_FIP_5200_feet   |
| 2013 NOAA<br>LiDAR  | 1 meter meters, VIVD0 |                               | NAD_1983_NSRS2007_StatePlane_Puerto_<br>Rico_Virgin_Isls_FIPS_5200 |
| Updated Project DEM | 10 feet               | feet, VIVD09                  | NAD_1983_StatePlane_Puerto_Rico_Virgin_<br>Islands_FIP_5200_feet   |

#### 3.2.1.2 Mosaicked Topobathy DEM

Once all of the source data raster files had been converted to the specified project coordinate system and units, the final step in the new DEM creation process was to combine the topographic data rasters so that each island is represented by no more than one individual raster file. This was accomplished using the ESRI Mosaic to New Raster tool. The combined topographic raster files were then reviewed through an internal QC process. If any discontinuities or quality issues were found in the data, the source of each issue was addressed and the updated surface was created and reviewed once more. The final topographic DEM for each island was saved in raster GeoTIFF format.

#### 3.2.1.3 Data Subregions

The advisory study topographic DEM is broken up into two subregions (shown in **Figure 7**), including one region covering both the Islands of St. John and St. Thomas, and the other including the Island of St. Croix and its associated archipelago.

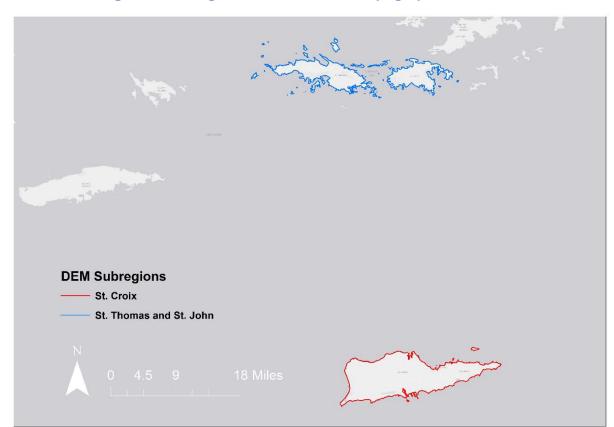



Figure 7. Subregions Used to Create Topographic DEM Data

#### 3.2.1.4 Shoreline Delineation

In order to derive a 0 foot VIVD09 shoreline, a raster layer was created by performing a focal mean over a 3x3 cell window using the ArcGIS Focal Statistics tool with the new project DEM as the input. The ArcGIS Contour List tool was then used to extract a 0 foot VIVD09 shoreline from the smoothed DEM. This shoreline was visually inspected, disconnected contours were removed, and overly complex sections of shoreline were manually redrawn. This shoreline then went through internal QC and any revisions, if needed, were made.

#### 3.2.2 Long Term Erosion

It was initially intended to complete long-term shoreline change analysis for the US Virgin Islands to be used to inform recovery efforts of potential long-term coastal hazards. A review of existing studies did not identify any modern island wide studies of shoreline change for the US Virgin Islands. Efforts were made to locate long term shoreline change data for the three major islands of the USVI through a detailed internet search and contacting sources that could potentially provide the necessary data. The results from this research established that there is currently no long term shoreline change data available. A summary of sources found through the internet search and contacts made is provided below.

Potential sources of shoreline change data that were found from the detailed internet search included:

- Study conducted by the USGS on the "Coastal Vulnerability Assessment of Virgin Islands National Park (VIIS) to Sea – Level Rise" (Pendleton et al., 2005) in which shoreline erosion and accretion rates were only included for the Virgin Islands National Park.
- Study presented by Georgia Southern University at GSA in 2013 on the "Assessment of Shoreline Change for Small Associated Islands of Puerto Rico and the United States Virgin Islands" (Runyan et al., 2013). The authors were contacted but had no shoreline change data for the USVI that they could provide.
- The USGS Coastal Change Hazard Portal was accessed and confirmed that no data was available for the USVI.
- The "Development of National Scale inventory of Shoreline Change Data for Identification of Erosion and Accretions" (Stauble, 2004) from USACE reported that no historic shoreline change programs were found for the USVI at that time.
- NOAA historical surveys were located but only provided partial coverage for St. Thomas and St. John and no coverage for St. Croix was available.
- The Coastal Vulnerability Index database was accessed; no information for the USVI was found to be available.

The list of contacts made to inquire whether there was any available data that they could provide in regards to shoreline change rates on the USVI included:

- Chester Jackson, of Georgia Southern University involved in the study conducted in 2013, assessing shoreline change for small islands of Puerto Rico and the USVI, established that they did not have any long term shoreline data currently available.
- Greg Guannel of UVI established that there was currently no data for shoreline change in the Virgin Islands other than the study done in the Virgin Islands National Park by the USGS covering only a portion of St. Thomas. The Department of Natural Resources may be planning on conducting a survey but a timeline has not been established. UVI is submitting a proposal with NSF in July to establish a long term shoreline monitoring program.
- Pedro Nieves from the DPNR CZM indicated that there were currently no active monitoring programs looking at shoreline change in the USVI. They are looking to develop a high resolution one using drone technology but are still working on the scope.
- Emily Himmelstoss and Rob Thieler of the USGS responded that they were not currently
  working on any shoreline change assessments for the USVI as part of the national shoreline
  change project but provided direction to a shoreline vectorization effort that NOAA worked
  on and that converted all historic T-sheets to shapefiles. The T sheets were downloaded
  and it was found that coverage of the islands was limited.

#### 3.2.3 Storm Induced Coastal Erosion Prone Areas

The USVI coastline experienced significant erosion from Hurricanes Maria and Irma. Although some areas may not have had significant flooding, many structures experienced foundation

damage due to storm-induced erosion. The areas impacted by storm-induced erosion during Hurricanes Maria and Irma were identified and mapped to highlight areas of significant change based on pre- and post-storm imagery and to help identify areas where mitigation projects might be desirable. The following components comprised this task:

## 3.2.3.1 Areas of Significant Storm Induced Erosion from Hurricane Maria and Irma

Areas of significant storm-induced erosion from Hurricane Maria and Irma were identified from a visual review of post-disaster vertical aerial photographs in comparison with the shoreline delineated from the pre-storm 2013 NOAA LiDAR surveys, used in the mapping tasks, and available pre-storm imagery. Each area of significant storm-induced erosion was delineated and a count of structures impacted by erosion was recorded.

The erosion areas were delineated based on a visual assessment of all data sources. Post-event imagery was sourced from Vexcel and NOAA. Vexcel imagery covers St. Thomas and St. John and NOAA imagery covers St. Croix. Pre-event imagery was sourced from NOAA Digital Coast and Google Earth. Naturally dynamic areas were disregarded based on indicators of vegetation and soil disturbance, as well as historical imagery from Google Earth Pro. Through this process, care was taken to distinguish between deceptive variations in the brightness and saturation of aerial imagery. Areas where the tree and shrub canopies were stripped, exposing the substrate beneath, were evaluated on a location by location basis. Oftentimes, these areas appeared to have been eroded when in fact the removal of vegetation exposed the existing underlying non-eroded natural materials.

Three types of coastal erosion processes were determined: erosion, deposition, and overwash. Coastal erosion occurs where sand is removed from the beach system; deposition occurs where sand is transported and stored in new sandbars; and overwash occurs where storm-induced waves and surge transport and deposit sand landward. Erosion can be identified in the aerial photos with indicators such as scarping, channel incision, and the disappearance of sandy areas. Deposition can be identified by new areas of sand deposits. Overwash can be identified by areas where sand was pushed inland of the original beach.

#### 3.2.3.2 Areas of Expected 1-Percent-annual-Chance Storm Induced Erosion

The effective FIS was used to identify areas of potential 1-percent-annual-chance level storm-induced erosion. Areas that had no erosion modeled during the effective study were not covered, however this does not mean that areas not covered by the effective study are not at risk to storm-induced erosion. A GIS polygon coverage was created to identify the areas of erosion modeled in the effective study. The polygons were bounded by the updated shoreline developed for this effort from the 2013 LiDAR and the area subject to erosion.

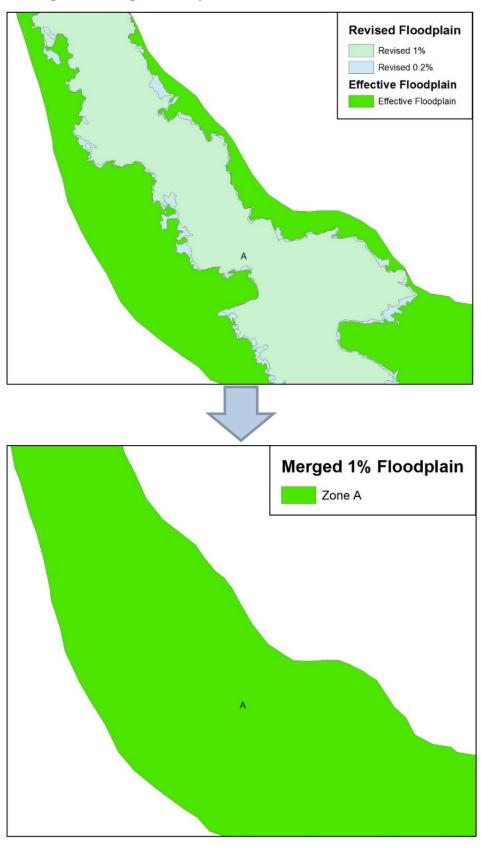
For coastal areas where sand veneer overlays rocky ledges, a non-standard erosion methodology was applied in the effective FIS and the sandy veneer was removed to varying depths. **Appendix C** describes the non-standard erosion from the effective FIS and describes how the methodology was applied to the flood hazard modeling transects.

<sup>&</sup>lt;sup>1</sup> USGS St. Petersburg Coastal and Marine Science Center.

The polygons were delineated landward based on either visual inspection of the sandy beach area, extent of erosion identified in the effective CHAMP database transects, or documentation from the effective FIS. The seaward extent was drawn along the updated shoreline established from 2013 LiDAR and then extended to either side of each transect. The alongshore extent was determined by a visually apparent change in beach morphology (coast type and/or composition) or other coastline characteristics such as changes in vegetation, shoreline orientation, presence of shoreline protection structures, or shoreline steepness. In cases where none of these factors provided a clear breakpoint, the zone was extended to the approximate midpoint of the next adjacent transect.

#### 3.2.3.3 Storm Induced Erosion Product Limitations / Assumptions

The information produced by this analysis will provide a useful resource for identifying areas subject to coastal storm erosion in support of the recovery effort. The following are data limitations and associated considerations:


- 1. The Hurricane Maria and Irma storm-induced erosion areas are solely based on aerial imagery analysis; no ground verification was performed.
- 2. The storm induced erosion areas include the effects of both Hurricanes Maria and Irma because aerial imagery was not collected between those two storm events.
- Areas indicated as experiencing erosion from Hurricanes Maria and Irma may recover from the erosion as time passes and the erosion identified may not be visible. Sand may be transported back to a beach from offshore deposits, or, similarly, overwashed sand may be removed from inland areas through both natural and man-made processes.
- 4. The expected 1-percent-annual-chance storm erosion areas are based on the analysis performed in the effective coastal FIS; no changes to the erosion type and analysis for current conditions were made.
- 5. The storm erosion potential areas are based on the effective FIS transect locations with interpolation between transects applied.

# 3.3 Supporting Advisory Products

#### 3.3.1 Floodplain Product Development

# 3.3.1.1 Merged 1-Percent and 0.2-Percent Floodplain Generation Process

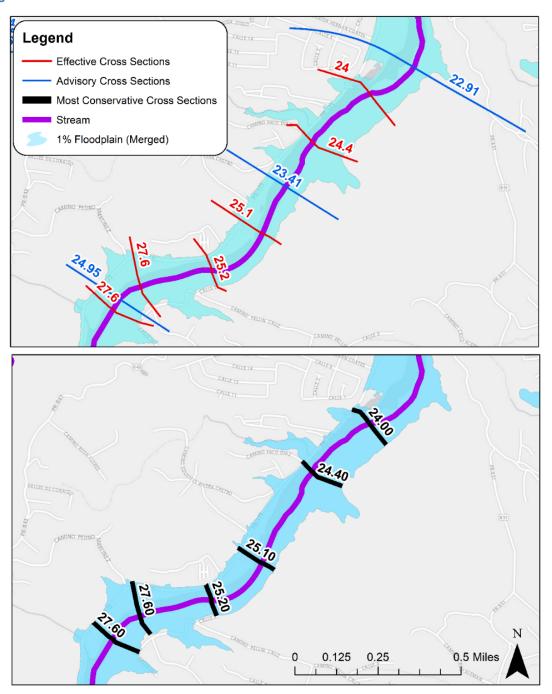
In order to show the most conservative picture of flood hazards and to generate seamless 1-percent and 0.2-percent floodplain advisory products, the new advisory floodplains were merged with the floodplains shown on the effective FIRM. Where the effective floodplain is wider than the newly computed advisory floodplain extent, the effective floodplain extent was retained as the more conservative advisory floodplain extent. Additionally, to ensure seamless transitions for the merged product coastal riverine tie-in areas were revisited. **Figure 8** shows an example of the merging process.



**Figure 8: Merged Floodplain Generation Process Illustration** 

#### 3.3.1.2 0.2-Percent Fringe Floodplains

For the 1-percent floodplains, a 0.2-percent shaded X Zone fringe was developed, similar to the standard FIRM floodplains. These 0.2-percent fringe areas were also built based on the most conservative floodplain respective to the effective or new advisory 0.2-percent mapping. Due to the new topographic information being used to map the advisory 0.2-percent floodplain boundaries, there were areas where the 0.2-percent floodplain extent was less than the effective 1-percent floodplains. As noted earlier, in those areas, the effective 1-percent floodplain extent was used, thereby covering the calculated 0.2-percent floodplain extent.


#### 3.3.1.3 Merged Riverine Cross Sections

The USVI advisory maps contain riverine floodplains developed from multiple models that utilized effective detailed and advisory BLE methods. In certain areas, water surface elevations existed from both effective and advisory models, thereby requiring a hierarchal protocol for display of flood elevations on the advisory maps as follows:

- 1. The effective and advisory cross sections were combined (maintaining elevation information) into a single "merged cross section" feature.
- 2. Where advisory cross sections crossed multiple stream reaches, cross sections were clipped to the appropriate stream reach.
- 3. On the merged cross section dataset, stationing was assigned in the upstream direction of every stream reach.
- 4. A Python script was developed that performed the following procedure on the merged cross section feature (with stream name and station number):
  - a. Iteration through the dataset by stream name beginning with the first station (ascending) and testing each cross section. If the water surface elevation (WSE) was less than the previous cross section, the cross section was removed, and then it continued to the next upstream cross section. In this way, where two cross sections exist from differing models, the more conservative WSE was used in the final mapping product. The resulting GIS shapefile therefore represented a blended dataset providing the most conservative WSE in areas of conflicting data.
  - b. In places where the effective cross section showed a higher WSE than the advisory model (and was therefore used as the more conservative information), these effective cross sections only had values for the 1-percent frequency. Because the advisory cross sections upstream and downstream of these effective cross sections are represented by 5 frequencies, a linear interpolation was used to populate the remaining frequencies. The methodology for this was as follows: 1) all frequencies were interpolated from the downstream advisory cross sections, 2) the 1-percent WSEs from the interpolated cross section and the effective cross section at this location were used to create a normalization factor, and 3) this normalization factor was applied to all of the frequencies on the effective cross section, resulting in a seamless WSE for the reach, with all frequencies attributed to all cross sections.

c. An interpolation check was performed to identify spaces in between the stationing that may have shown a higher water surface elevation if interpolation was performed on the unmerged, original datasets. In the areas where these interpolations would have resulted in a higher flood elevation, manual edits were made, and BFE lines were brought in from the effective. Figure 9: Selection of Most Conservative Riverine Water Surface Elevation Process shows an example of the BFE line selection process.

Figure 9: Selection of Most Conservative Riverine Water Surface Elevation Process



- 5. Manual clean-up was then performed as follows:
  - a. Where cross sections overlapped, the more conservative cross section was maintained and the less conservative was removed or the cross section orientation was altered to avoid the overlap.
  - b. The merged floodplain polygon was used to clip the cross sections so cross sections did not exist outside of the floodplain.
  - c. Cross sections were extended where necessary to cover the floodplain and reoriented to avoid cross section overlaps.
- 6. An independent quality review was performed on interpolated values, at junctions, at tieins, and at randomly sampled locations.

## 3.3.1.4 Final Floodplain Products

One merged floodplain product resulted from the merging of effective and advisory floodplain extents to present the most conservative floodplain and flood elevation for advisory purposes.

#### 3.3.2 Map Change Products

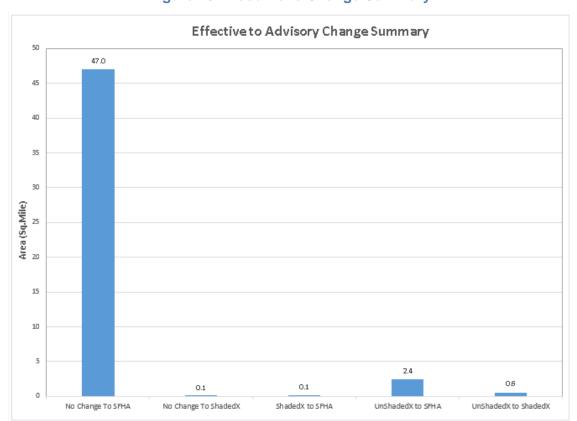
The effective flood hazard data and the advisory 1-percent seamless flood hazard data were compared to analyze the changes in flood hazard zones. The analyses were developed using ESRI's ArcGIS software and its Geoprocessing tools. Spatial overlay tool "Union" was the primary function utilized for this analyses. The union function identified the differences between the effective and advisory flood zone information. This spatial analyses resulted in about 16 zone change (AE to A, VE to AE, A to X, etc.) combinations. To simplify the visualization and comprehension of this product, the change combinations were further grouped into 5 bins, attributed as "Change Description". **Table 3-9** summarizes the zone change combinations and the categories.

**Table 3-9: Zone Change Combinations and Categories** 

| Change Description            | Zone Change Combination                                                               |
|-------------------------------|---------------------------------------------------------------------------------------|
| ShadedX (SX) to SFHA          | SX to A; SX to AE                                                                     |
| UnShadedX (UX) to SFHA        | UX to A; UX to AE; UX to AO                                                           |
| No Change to SFHA Designation | A to A; A to AE; AE to A; AE to AE; AE to VE; AO to A;AO to AO;<br>VE to AE; VE to VE |
| No Change To ShadedX          | SX to SX                                                                              |
| UnShadedX to ShadedX          | UX to SX                                                                              |

The map change product, which was in polygon GIS format, includes the results of the analyses. The dataset was attributed with above described zone change and change descriptions, including

the source flood zone attribution from the effective flood zone and 1-percent advisory flood zone layers.


Additionally, a spreadsheet product was developed that included land area summaries that were based on the GIS change product, as the input. The spreadsheet products include the following land area summaries:

- Summary of Special Flood Hazard Area Change (Worksheet: SFHA\_Change)
- Summary of Flood Zone Change, in Square miles (Worksheet: Zone\_Change\_SqMiles)
- Flood Zone Change summary in Acres (Worksheet: Zone\_Change\_Acres)

Provided below is a quick summary of the high-level discussion on change statistics (in square miles).

- Decreases to the 1-percent floodplain area: None
- Total 1-percent Floodplain Area Increase (Newly Added Areas to SFHA): 2.5 Sq. miles
  - All increases are in the riverine areas
  - No increases to coastal areas
- Area changed from UnShadedX to ShadedX: 0.6 Sq. mile

A graphical summary of floodplain changes is also provided in Error! Reference source not found...



**Figure 10: Flood Zone Change Summary** 

#### 3.3.3 WSEL and Depth Grid Products

Flood depth and analysis grids are an ideal way to communicate more complete flood risk information for the new advisory mapping products. The value in each cell represents the magnitude of flooding in that particular area (see **Figure 11** where the darker blue areas represent greater flood depths). Flood depth grids are produced by taking the difference between water surface elevation (WSEL) grids and land topography. The following sections will describe the process for development of the WSEL and flood depth grids.

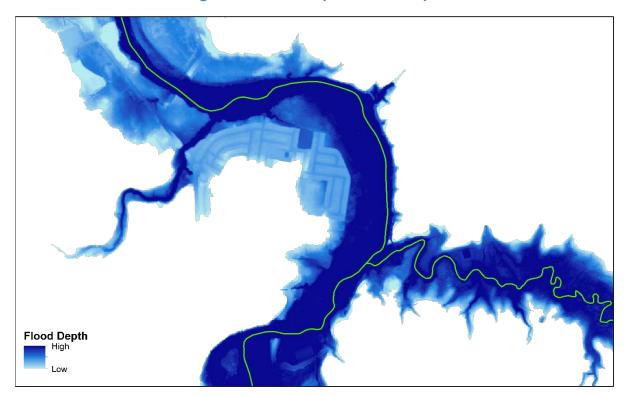



Figure 11: Flood Depth Grid Example

## 3.3.3.1 Water Surface Elevation (WSEL) Grid Development

WSEL grids were developed for both the 1-percent and 0.2-percent annual chance events. Each WSEL grid provides the WSEL values within the inundation extent of that particular flood event (the merged 1-percent and 0.2-percent floodplain products described in Section 3.3.1.1). Following FEMA guidance for flood risk analysis and mapping, the cell resolution for the WSEL grids were less than 10 feet x 10 feet. Specifically, a 5-foot cell resolution was chosen to ensure the grid complemented the geometry of the floodplain polygons.

#### 3.3.3.1.1 Coastal WSEL Grid

The coastal WSEL grids were generated from the static base flood elevations (BFE) from the final merged floodplain polygons. According to FEMA guidance, while coastal water surface mapping may produce outputs that appear unnatural, the stair-step effect between coastal zones is considered normal and acceptable since the product is intended to yield results that most closely match the floodplain maps. The coastal WSEL was clipped to the USVI shoreline developed for this project. **Figure 12** shows example of a pure coastal WSEL grid.

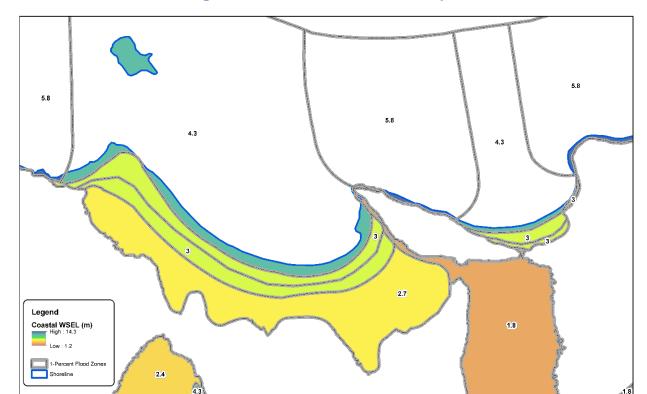



Figure 12: Coastal WSEL Grid Example

#### 3.3.3.1.2 Riverine WSEL Grids

The riverine WSEL grids were developed using the merged riverine cross section dataset. This was accomplished by generating a Triangulated Irregular Network (TIN) from the vector water surface features and attributes (the water surface elevation, in meters). The TINs were created on a stream by stream basis to avoid some of the problems experienced in confluence areas, and then the individual TINs were converted to raster format and mosaicked together. The result is a continuous WSEL grid confined within the riverine floodplain (**Figure 13**).

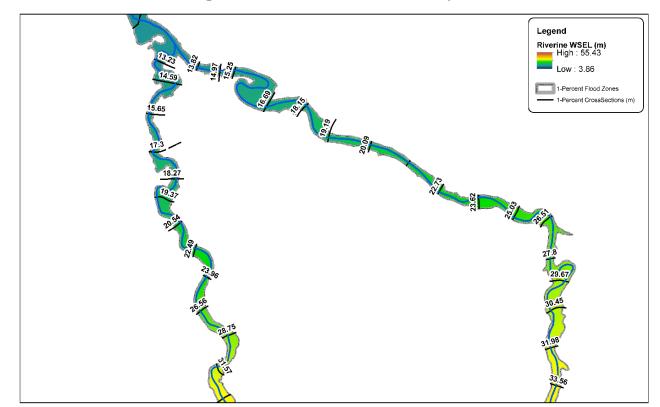
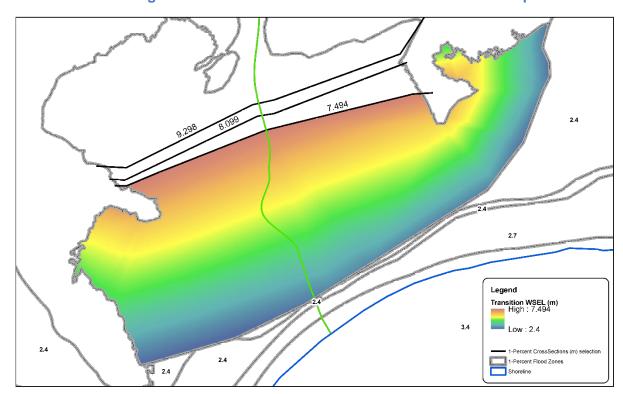




Figure 13: Riverine WSEL Grid Example

# 3.3.3.1.3 Quality Considerations

Several quality considerations were taken into account during development of the riverine and coastal WSEL girds.

- **Backwater areas:** A script was developed to ensure that backwater areas and side channels were interpolated properly; specifically, that the side channel was not interpolated to an elevation higher than the upstream cross section.
- Coastal-riverine transition areas: Individual TINs were developed for the coastal-riverine transition areas to ensure a smooth transition between these two different flood sources. Figure 14 shows an example of a transition area.



**Figure 14: Coastal-Riverine Transition WSEL Grid Example** 

 Isolated/disconnected floodplain areas: TINs were not automatically generated for floodplain polygons that were not connected to the main floodplain and that did not have an intersecting riverine cross section. These areas were manually assigned a WSEL value based on the nearest cross section and using engineering judgement. Isolated floodplain located farther than 200 feet from the main floodplain were assigned a "NULL" value to avoid making an incorrect judgement based on proximity.

## 3.3.3.2 Depth Grid Development

The riverine, coastal, and riverine-coastal transition WSELs were merged together to produce seamless WSEL grids for the 1- and 0.2-percent annual chance events. To generated depth grids, the 2013 LiDAR DEM was subtracted from the WSEL grids using a 5-foot cell resolution to match the DEM. Two additional steps were required to finalize the 1- and 0.2-percent depth grids:

- **AO Zones:** Since AO zones already represent depth of flooding, these polygons were converted to grids based on the Zone AO depths and then mosaicked into the depth grid.
- Negative Depths: As described earlier, the advisory products represent a merge of the
  detailed effective and new advisory floodplains and riverine cross sections. As a result, the
  depth grids produced negative depths in some areas especially in areas where the effective
  floodplain was wider than the advisory floodplain mapped using the updated LiDAR DEM.
  These negative depths were converted to 0.1 foot to represent that these areas are still
  located within the regulatory FEMA floodplain even though no true depth of flooding was
  calculated.

## 3.3.4 Critical Facility Flood Risk Summaries

A critical facility provides services and functions essential to a community, especially during and after a disaster. *FEMA Fact Sheet: Critical Facilities and Higher Standards* notes that critical facilities can include a variety of facility types such as police stations, fire stations, critical vehicle and equipment storage facilities, and emergency operations centers. Individual communities typically determine the types of facilities that are considered "critical" to be included in a list of this sort. Although the US Virgin Islands include three primary islands as well as other smaller archipelago islands, the scope of work for this project did not include soliciting responses from each individual island as to which facility types would be considered critical to each. Rather, the project team utilized the aforementioned fact sheet to determine critical facility types that would be included in the effort. In support of defining critical facility types, a variety of point features were utilized to help identify critical facility building footprints. Priority was given to capturing individual buildings and data specific to each building at critical facility sites across the entirety of the US Virgin Islands. **Table 3-10** includes the list of site types considered for inclusion.

**Table 3-10: Critical Facilities Site Types** 

| Data Type                       | Source        | Circa<br>Date | GIS Data Layer                                                        |
|---------------------------------|---------------|---------------|-----------------------------------------------------------------------|
| Police Stations                 | JFO Provided  | 2018          | State_Police_CAD                                                      |
| Folice Stations                 | HIFLD Freedom | 2018          | Local_Law_Enforcement_Locations                                       |
| Fire Stations                   | JFO Provided  | 2018          | Fire_Stations_CAD                                                     |
| riie Stations                   | HIFLD Freedom | 2018          | FireStations                                                          |
| Vehicle Storage Facilities      | No Data       | 2018          | Typically only able to be detected via streetview; separately tagged. |
| Equipment Storage Facilities    | No Data       | 2018          | Typically only able to be detected via streetview; separately tagged. |
| Emergency Operations<br>Centers | HIFLD Freedom | 2018          | State_Emergency_Operations_Centers _EOC                               |
|                                 |               |               | USVI_HC.shp                                                           |
|                                 | JFO Provided  | 2018          | Health_Care_Facilities_CAD                                            |
|                                 |               |               | USVI_VeteransHealthAdmin.shp                                          |
| Medical Facilities              |               |               | Hospitals                                                             |
|                                 | HIFLD Freedom | 2018          | Urgent_Care_Facilities (empty Feature class)                          |
|                                 |               |               | Veterans_Health_Administration_Medical_Facilities                     |
| Nursing Homes                   | HIFLD Freedom | 2018          | Nursing_Homes                                                         |
| Blood Banks                     | No Data       | 2018          | Only separate from Hospital where identified.                         |

| Data Type                                              | Source          | Circa<br>Date | GIS Data Layer                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------|-----------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Medical Records Facilities                             | No Data         | 2018          | Only separate from Hospital where identified.                                                                                                                                                                                                                                                                                                                                                              |
|                                                        |                 | 2018          | VI_Schools_corrected.shp                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                        | JFO Provided    | 2018          | Schools_USVI                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                        |                 | 2018          | Schools_USVI_1                                                                                                                                                                                                                                                                                                                                                                                             |
| Schools                                                |                 | 2018          | Colleges_and_Universities                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                        | HIFLD Freedom   | 2018          | Private_Schools                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                        | nirld rieedolli | 2018          | Public_Schools                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                        |                 | 2018          | Supplemental_Colleges                                                                                                                                                                                                                                                                                                                                                                                      |
| Day Care Centers                                       | HIFLD Freedom   | 2018          | Day_Care_Centers                                                                                                                                                                                                                                                                                                                                                                                           |
| Power Generation Centers                               | No Data         | 2018          | HIFLD is secure & HIFLD Data ONLY covers continental US.                                                                                                                                                                                                                                                                                                                                                   |
| Wastewater Treatment                                   | JFO Provided    | 2018          | Wastewater_20171127_update.shp                                                                                                                                                                                                                                                                                                                                                                             |
| Plants                                                 | JFO Provided    | 2018          | WasteWater.shp                                                                                                                                                                                                                                                                                                                                                                                             |
| Water Treatment Plants                                 | No Data         | 2018          | HIFLD is secure.                                                                                                                                                                                                                                                                                                                                                                                           |
| Volatile / Flammable /<br>Explosive / Toxic Facilities | HIFLD Freedom   | 2018          | EPA_Comprehensive_Environmental_R esponse_Compensation_and_Liability_I nformation_System_Facilities EPA_Emergency_Response_ER_Facility _Response_Plan_FRP_Facilities EPA_Emergency_Response_ER_Risk_M anagement_Plan_RMP_Facilities EPA_Emergency_Response_ER_Toxic_S ubstances_Control_Act_TSCA_Facilities EPA_Resource_Conservation_and_Rec overy_Act_Treatment_Storage_and_Di sposal_Facilities_RCRATSD |
| Pharmacies                                             | JFO Provided    | 2018          | USVI_Pharm.shp                                                                                                                                                                                                                                                                                                                                                                                             |
| Airports                                               | JFO Provided    | 2018          | Airports_CAD                                                                                                                                                                                                                                                                                                                                                                                               |
| Shelters                                               | JFO Provided    | 2018          | Shelters_USVI_Certified_2014                                                                                                                                                                                                                                                                                                                                                                               |
| NationalShelterSystem                                  | HIFLD Freedom   | 2018          | NationalShelterSystem                                                                                                                                                                                                                                                                                                                                                                                      |
| FEMA Facilities                                        | JFO Provided    | 2018          | FEMA_CAD                                                                                                                                                                                                                                                                                                                                                                                                   |

| Data Type                            | Source        | Circa<br>Date | GIS Data Layer                   |
|--------------------------------------|---------------|---------------|----------------------------------|
| VITEMA Facilities                    | JFO Provided  | 2018          | VITEMA                           |
| EMS_Stations                         | HIFLD Freedom | 2018          | EMS_Stations                     |
| Seaplane_usvi                        | JFO Provided  | 2018          | Seaport_seaplanes_usvi.shp       |
| Seaport_usvi                         | JFO Provided  | 2018          | Seaport_seaplanes_usvi.shp       |
| Public_Health_Departments            | HIFLD Freedom | 2018          | Public_Health_Departments        |
| Pharmacies                           | HIFLD Freedom | 2018          | Pharmacies                       |
| State_Capitol_Buildings              | HIFLD Freedom | 2018          | State_Capitol_Buildings          |
| Major_State_Government_<br>Buildings | HIFLD Freedom | 2018          | Major_State_Government_Buildings |
| FDIC_Insured_Banks                   | HIFLD Freedom | 2018          | FDIC_Insured_Banks               |
| Solid_Waste_Landfill_Faciliti es     | HIFLD Freedom | 2018          | Solid_Waste_Landfill_Facilities  |
| FEMA_CAD                             | JFO Provided  | 2018          | FEMA_CAD                         |

Point data listed in Table 3-10 established known available critical facility sites and were utilized to locate likely critical facilities. Primary site data resources included various data provided by the FEMA Joint Field Office (JFO) and also various data from HIFLD Open 2018 Data.

After sites were located that intersect the Advisory Floodplains, building footprints were extracted for the site and processed for inclusion. Open Streetmap HOTSOM Building Footprints downloaded in May 2018 were utilized as the source footprint layer. Identified facilities include a photograph; priority was placed on capturing a 'Street-level' picture where available or alternatively capturing a planimetric overhead photo. Source images are embedded in the GIS data which is accessible in ArcGIS 10.3 or higher; the user can access the photographs directly through the "Attachment Manager". GIS users are encouraged to utilize the ArcGIS Help files on how to open and view attachments.

Attributes such as name, address, city and zip were sporadic in the source data. Data were backfilled to the extent possible. Latitude and Longitude in decimal degrees exist based on the centroid of the building footprint. Lowest Adjacent Grade (LAG) and Highest Adjacent Grade (HAG) were extracted from the 2013 Light Detection and Ranging (LiDAR) Digital Elevation Model (DEM) along the perimeter of the building footprint. Advisory base flood elevations (1% and 0.2% annual chance or ABFE100 and ABFE500) represent the maximum elevation from the combination of both the water surface elevation grids intersecting each building footprint for locations where both effective BFE's and new advisory modeling water elevations exist. However please note the following exceptions:

- 1. Because the coastal BFE's come directly from effective floodplains and BFE's, there will be no ABFE value for the 0.2% Annual Chance or the 500-Year.
- 2. Because effective approximate zone mapping (ZONE A) does not include effective BFE's, the Advisory base flood elevations (1% and 0.2% annual chance or ABFE100 and ABFE500) represent only the newly modeled advisory water surface elevations.

The GIS database includes results of a risk analysis that was performed based on the following parameters:

- Damage percentages are computed based on the maximum depth at each building footprint per the following:
  - Depth values are established by the depth grids delivered.
  - Depth-Damage function selection was based on typical Hazus-MH Flood Model parameters which means the following were assigned for each respective building:
    - Occupancy
    - Number of Stories (Where 2010 building footprints intersected the critical facility building footprint utilized, the height value was transferred to establish stories assuming a 10-foot ceiling height. All other building heights were assumed to be 1-story).
    - First-Floor-Height (All buildings were assumed to have a first-floor height of 0.5 feet).
    - Foundations Type (All buildings were assumed to be Slab-On-Grade)
    - Core Construction Type (All buildings were assumed to be Concrete)
    - ➤ In addition, the newly created ABFE Floodplain Zones were utilized to establish whether a building touched a coastal zone and therefore, coastal depth-damage functions were applied.

Notably, future building-specific work would benefit from making distinctions in varied occupancies within a larger building, however because dollar values are not being considered as part of the risk assessment (only estimated damage percentages), the results being produced as part of this project will not be over- or under-stating estimated (\$) value. Operators would therefore be free to consider building and contents value in light of the estimated maximum damage percentages. Furthermore, additional work efforts at the building-level would benefit from a detailed analysis of the first-floor elevation or height. A cursory review of the difference between the LAG and HAG elevations as extracted from the elevation grid included too wide a range of values to utilize the difference value as a proxy for the first-floor height of the building without a detailed analysis therefore, a first-floor height of 0.5 feet was assumed for all buildings and is believed to represent the highest potential risk for each building.

The Critical Facility Flood Summary documents represent a handout product that can be provided to operators and includes core recommendations from the most recent FEMA post-event

guidance documents along with key contacts and publications thus providing operators with avenues for appropriately considering options. Each of the elements on the Critical Facility Summary document are drawn from a customized python module that can be executed on a CSV export of the GIS data should additional work be required in the future.

Specific to the Critical Facility Summary documents (in relation to the flood hazard data), notes have been added to clarify situations where key differences exist between the effective flood hazard data and the new advisory data:

- "None" represents buildings that do not intersect the effective 1% floodplain.
- "No Data" represents areas where Water Surface and Depth Grids that are required to calculate losses were not produced per the scope of work.

**Figure 15** demonstrates an example where the building in-question intersects the effective approximate zone (ZONE A) but is outside the newly modeled advisory floodplain. It is important to recognize that the most conservative floodplain mapping was retained for the final ABFE mapping products:



Figure 15: Effective and ABFE Merged Floodplain Example

Based on the example above, the Critical Facility Flood Summary document has been designed to show damages as "None":

Figure 16 shows a sample Critical Facility Flood Summary report.

**Figure 16: Sample Critical Facility Flood Summary Report** 



U.S. Virgin Islands Advisory Data

# Critical Facility Flood Summary



Note: the building that this Summary represents is outlined in blue

Type: School

Name:

BERTHA C BOSCHULTE JUNIOR HIGH SCHOOL

Address

9-1 & 12A BOVONI ST THOMAS 00802

Lat/Long: 18.3186, -64.890309

| Lowest Adj         | acent Grade (π.)                   | Highest Adja                 | cent Grade (ft.)             |
|--------------------|------------------------------------|------------------------------|------------------------------|
|                    | 64.7                               | 7                            | 3.6                          |
| Flood<br>Frequency | Advisory Flood<br>Elevation (ft.)* | Estimated<br>Building Damage | Estimated<br>Contents Damage |
| 1 Percent          | 63.0                               | None                         | None                         |
| 0.2 Percent        | 63.9                               | N/A                          | N/A                          |

Lawrent Adiacout Crade (#1)\*

#### Recommendations:

- Building owners should have a vulnerability assessment performed by a qualified architectural and engineering team (FEMA 543).
- A vulnerability assessment should be performed for all facilities older than 5 years (FEMA 543).
- It is particularly important to perform a vulnerability assessment if a facility is located in a building not originally designed for critical occupancy (FEMA 543).

Another example includes where the coastal 0.2% analysis year was not part of the ABFE scope of work and therefore shows "No Data" exists as shown in **Figure 17**:

Effective ZONE
AE

USVICE 221

USVICE 223

USVICE 223

USVICE 223

USVICE 220

Effective ZONE
X

USVICE 221

USVICE 220

USVICE 220

Effective ZONE
X

USVICE 220

USVICE 220

Figure 17: Area Where Effective 0.2% Flood Hazard Data Was Used

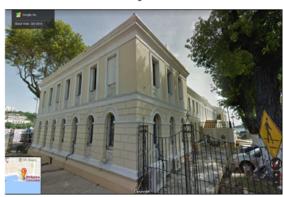

Based on the example above, the Critical Facility Flood Summary document has been designed to show damages as "No Data" as shown in **Figure 18**:

Figure 18: Critical Facility Where 0.2% Water Surface Grid Not Created



U.S. Virgin Islands Advisory Data

# Critical Facility Flood Summary



Type: Government Center

Name:

Senate Building - Philippine Honorary

Address:

St Thomas 00801

Lat/Long: 18.339994, -64.92956

| Lowest Adjacent Grade (ft.)* |                                    |                              | Highest Adjacent Grade (ft.)* |                              |  |
|------------------------------|------------------------------------|------------------------------|-------------------------------|------------------------------|--|
| 3.7                          |                                    |                              | 7.1                           |                              |  |
| Flood<br>Frequency           | Advisory Flood<br>Elevation (ft.)* | Estimated<br>Building Damage |                               | Estimated<br>Contents Damage |  |
| 1 Percent                    | 7.0                                |                              | 5.6%                          | 35.7%                        |  |
| 0.2 Percen                   | No Data**                          | 1                            | N/A                           | N/A                          |  |

#### Recommendations:

- Building owners should have a vulnerability assessment performed by a qualified architectural and engineering team (FEMA 543).
- A vulnerability assessment should be performed for all facilities older than 5 years (FEMA 543).
- It is particularly important to perform a vulnerability assessment if a facility is located in a building not originally designed for critical occupancy (FEMA 543).

Table 3-11 indicates overall statistics of average damage percentages by facility types. The data demonstrates that for the 1% event, Marine Facilities are generally at most risk and Emergency Operation Centers (with damage percentages averaging 0%) realizing the least risk. Users are cautioned to take note that not all facilities were analyzed for the 0.2% coastal and therefore the table does not show increasing risk between the 1% and 0.2% flood events.

**Table 3-11: Summary of Critical Facility % Damage Average Estimates** 

|                | Building<br>Count | Mean (AVG) Of All Facilities          |                                         |                                       |                                         |
|----------------|-------------------|---------------------------------------|-----------------------------------------|---------------------------------------|-----------------------------------------|
| Туре           |                   | Building<br>Damage<br>Percent<br>(1%) | Building<br>Damage<br>Percent<br>(0.2%) | Contents<br>Damage<br>Percent<br>(1%) | Contents<br>Damage<br>Percent<br>(0.2%) |
| Police Station | 10                | 1%                                    | 0%                                      | 2%                                    | 0%                                      |
| Fire Station   | 7                 | 1%                                    | 0%                                      | 2%                                    | 0%                                      |

|                                |                   | Mean (AVG) Of All Facilities          |                                         |                              |                                         |
|--------------------------------|-------------------|---------------------------------------|-----------------------------------------|------------------------------|-----------------------------------------|
| Туре                           | Building<br>Count | Building<br>Damage<br>Percent<br>(1%) | Building<br>Damage<br>Percent<br>(0.2%) | Contents Damage Percent (1%) | Contents<br>Damage<br>Percent<br>(0.2%) |
| Power Generation Center        | 10                | 7%                                    | 0%                                      | 10%                          | 0%                                      |
| Wastewater Treatment Plant     | 32                | 6%                                    | 5%                                      | 9%                           | 8%                                      |
| Government Center              | 3                 | 5%                                    | 2%                                      | 32%                          | 10%                                     |
| Airport                        | 9                 | 7%                                    | 0%                                      | 10%                          | 0%                                      |
| Emergency Operations<br>Center | 32                | 0%                                    | 0%                                      | 0%                           | 0%                                      |
| Medical Facilities             | 5                 | 2%                                    | 1%                                      | 8%                           | 4%                                      |
| Pharmacy                       | 5                 | 10%                                   | 11%                                     | 35%                          | 33%                                     |
| Port                           | 7                 | 25%                                   | 0%                                      | 34%                          | 0%                                      |
| Marine Facilities              | 2                 | 30%                                   | 7%                                      | 42%                          | 9%                                      |
| Shelter                        | 14                | 3%                                    | 4%                                      | 17%                          | 20%                                     |
| School                         | 90                | 2%                                    | 1%                                      | 11%                          | 5%                                      |
| TOTAL                          | 226               | 8%                                    | 2%                                      | 16%                          | 7%                                      |

# 4.0 References

- Pendleton, E.A., Thieler, R.E., Williams, S.J. (2005). 'Coastal Vulnerability Assessment of Virgin Islands National Park (VIIS) to Sea-Level Rise'. U.S. Geological Survey Open File Report 2004 1398. Available at: https://pubs.usgs.gov/of/2004/1398/html/gvariables.htm. Accessed: Apr. 3, 2018.
- Runyan, R., Jackson, C., Bush, D., Perison-Parrish, E., Siemer, K., Llerandi, R., Pablo, A., Neal, W. (2013). 'An Assessment of Shoreline Change for Small Associated Islands of Puerto Rico and the United States Virgin Islands'. Presented at: GSA. 2013 Oct. 31. Denver, CO. Available at: https://gsa.confex.com/gsa/2013AM/webprogram/Paper233301.html. Accessed: Apr. 3, 2018.
- Stauble, D.K. (2004). 'Development of National Scale Inventory of Shoreline Change Data for Identification of Erosion and Accretions: Working Draft'. U.S. Army Corps of Engineers. at: http://www.iwr.usace.army.mil/Portals/70/docs/nsms/NationalScaleInventoryWorkingDraft.pd f. Accessed on: Apr. 5, 2018.
- Coastal Change Hazards: Hurricanes and Extreme Storms. USGS St. Petersburg Coastal and Marine Science Center. https://coastal.er.usgs.gov/hurricanes/coastal-change/
- Morton, R.A., Miller, T.L., and Laura J. Moore. (2004). National Assessment of Shoreline Change: Part 1 Historical Shoreline Changes and Associated Coastal Land Loss Along the U.S. Gulf of Mexico. Open-File Report 2004-1043. U.S. Department of the Interior, U.S. Geological Survey.
- National Oceanic and Atmospheric Administration. (2000). "Tide and current glossary," U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Ocean Service, Center for Operational Oceanographic Products and Services, Silver Spring, MD, 29 pp.

# 5.0 Appendices

# **5.1** Appendix A: Hydraulic Analysis Streams List

**Table 5-1: Summary of Hydraulic Analyses** 

| HEC-RAS Model Name | Flooding Source Name                  | Length (miles) |
|--------------------|---------------------------------------|----------------|
| 20016              | Battery Gut (St. John Model #16)      | 0.63           |
| 10285              | Bethlehem Gut (St. Croix Model #285)  | 2.68           |
| 10460              | Caledonia Gut (St. Croix Model #460)  | 0.57           |
| 20046              | Cob Gut (St. John Model #46)          | 1.31           |
| 20127              | Coral Bay Gut (St. John Model #127)   | 0.61           |
| 10318              | Creque Gut (St. Croix Model #318)     | 1.58           |
| 10400              | Drainage Canal (St. Croix Model #400) | 1.40           |
| 10403              | Drainage Canal (St. Croix Model #403) | 4.18           |
| 20021              | Fish Bay Gut (St. John Model #21)     | 1.15           |
| 20005              | Guinea Gut (St. John Model #5)        | 1.00           |
| 10595              | Gut #1 (St. Croix Model #595)         | 0.97           |
| 10569              | Gut #2 (St. Croix Model #569)         | 0.77           |
| 10609              | Gut #3 (St. Croix Model #609)         | 0.98           |
| 10628              | Gut #4 (St. Croix Model #628)         | 1.14           |
| 10076              | Gut #5 (St. Croix Model #76)          | 3.88           |
| 10157              | Gut #6 (St. Croix Model #157)         | 2.52           |
| 10128              | Jolly Hill Gut (St. Croix Model #128) | 2.24           |
| 20064              | Reef Bay Gut (St. John Model #64)     | 1.95           |
| 10211              | River Gut (St. Croix Model #211)      | 7.19           |
| 10675              | Salt River (St. Croix Model #675)     | 3.23           |

| HEC-RAS Model Name | Flooding Source Name                                 | Length (miles) |
|--------------------|------------------------------------------------------|----------------|
| 10677*             | Salt River Diversion Channel (St. Croix Model #677)* | 1.12           |
| 30109              | Turpentine Run (St. Thomas Model #109)               | 3.15           |
| 10148              | Unnamed Stream (St. Croix Model #148)                | 0.98           |
| 10222              | Unnamed Stream (St. Croix Model #222)                | 0.66           |
| 10229              | Unnamed Stream (St. Croix Model #229)                | 1.24           |
| 10241              | Unnamed Stream (St. Croix Model #241)                | 2.56           |
| 10264              | Unnamed Stream (St. Croix Model #264)                | 4.37           |
| 10266              | Unnamed Stream (St. Croix Model #266)                | 0.51           |
| 10272              | Unnamed Stream (St. Croix Model #272)                | 0.29           |
| 10275*             | Unnamed Stream (St. Croix Model #275)*               | 0.81           |
| 10301              | Unnamed Stream (St. Croix Model #301)                | 2.16           |
| 10312              | Unnamed Stream (St. Croix Model #312)                | 0.57           |
| 10033              | Unnamed Stream (St. Croix Model #33)                 | 2.56           |
| 10335              | Unnamed Stream (St. Croix Model #335)                | 1.26           |
| 10336              | Unnamed Stream (St. Croix Model #336)                | 0.53           |
| 10337              | Unnamed Stream (St. Croix Model #337)                | 1.68           |
| 10340              | Unnamed Stream (St. Croix Model #340)                | 0.64           |
| 10341              | Unnamed Stream (St. Croix Model #341)                | 4.13           |
| 10342              | Unnamed Stream (St. Croix Model #342)                | 0.79           |
| 10348              | Unnamed Stream (St. Croix Model #348)                | 1.79           |
| 10036              | Unnamed Stream (St. Croix Model #36)                 | 0.57           |
| 10383              | Unnamed Stream (St. Croix Model #383)                | 0.74           |
| 10386              | Unnamed Stream (St. Croix Model #386)                | 0.63           |
| 10039              | Unnamed Stream (St. Croix Model #39)                 | 1.34           |

| HEC-RAS Model Name | Flooding Source Name                   | Length (miles) |
|--------------------|----------------------------------------|----------------|
| 10426              | Unnamed Stream (St. Croix Model #426)  | 3.20           |
| 10448*             | Unnamed Stream (St. Croix Model #448)* | 0.64           |
| 10455              | Unnamed Stream (St. Croix Model #455)  | 0.49           |
| 10471              | Unnamed Stream (St. Croix Model #471)  | 2.72           |
| 10481              | Unnamed Stream (St. Croix Model #481)  | 1.69           |
| 10049              | Unnamed Stream (St. Croix Model #49)   | 2.94           |
| 10500              | Unnamed Stream (St. Croix Model #500)  | 1.93           |
| 10502              | Unnamed Stream (St. Croix Model #502)  | 0.19           |
| 10506              | Unnamed Stream (St. Croix Model #506)  | 0.38           |
| 10510              | Unnamed Stream (St. Croix Model #510)  | 1.06           |
| 10511              | Unnamed Stream (St. Croix Model #511)  | 0.32           |
| 10512              | Unnamed Stream (St. Croix Model #512)  | 0.32           |
| 10524              | Unnamed Stream (St. Croix Model #524)  | 0.26           |
| 10527              | Unnamed Stream (St. Croix Model #527)  | 0.95           |
| 10530              | Unnamed Stream (St. Croix Model #530)  | 0.41           |
| 10540              | Unnamed Stream (St. Croix Model #540)  | 0.81           |
| 10542              | Unnamed Stream (St. Croix Model #542)  | 0.64           |
| 10544              | Unnamed Stream (St. Croix Model #544)  | 1.15           |
| 10551              | Unnamed Stream (St. Croix Model #551)  | 1.20           |
| 10555              | Unnamed Stream (St. Croix Model #555)  | 1.25           |
| 10560              | Unnamed Stream (St. Croix Model #560)  | 0.54           |
| 10579              | Unnamed Stream (St. Croix Model #579)  | 0.49           |
| 10584              | Unnamed Stream (St. Croix Model #584)  | 0.83           |
| 10060              | Unnamed Stream (St. Croix Model #60)   | 1.56           |

| HEC-RAS Model Name | Flooding Source Name                   | Length (miles) |
|--------------------|----------------------------------------|----------------|
| 10601              | Unnamed Stream (St. Croix Model #601)  | 0.71           |
| 10626              | Unnamed Stream (St. Croix Model #626)  | 0.60           |
| 10634              | Unnamed Stream (St. Croix Model #634)  | 0.83           |
| 10635              | Unnamed Stream (St. Croix Model #635)  | 0.33           |
| 10650              | Unnamed Stream (St. Croix Model #650)  | 0.65           |
| 10681              | Unnamed Stream (St. Croix Model #681)  | 1.18           |
| 10686              | Unnamed Stream (St. Croix Model #686)  | 0.42           |
| 10689*             | Unnamed Stream (St. Croix Model #689)* | 0.86           |
| 10692              | Unnamed Stream (St. Croix Model #692)  | 0.65           |
| 10707              | Unnamed Stream (St. Croix Model #707)  | 0.61           |
| 10712*             | Unnamed Stream (St. Croix Model #712)* | 1.53           |
| 10719              | Unnamed Stream (St. Croix Model #719)  | 0.47           |
| 10729              | Unnamed Stream (St. Croix Model #729)  | 2.58           |
| 10740              | Unnamed Stream (St. Croix Model #740)  | 1.19           |
| 10748              | Unnamed Stream (St. Croix Model #748)  | 0.42           |
| 10756              | Unnamed Stream (St. Croix Model #756)  | 1.00           |
| 10757              | Unnamed Stream (St. Croix Model #757)  | 0.55           |
| 10763              | Unnamed Stream (St. Croix Model #763)  | 1.06           |
| 10770              | Unnamed Stream (St. Croix Model #770)  | 1.57           |
| 10782              | Unnamed Stream (St. Croix Model #782)  | 0.65           |
| 10793              | Unnamed Stream (St. Croix Model #793)  | 0.31           |
| 10795              | Unnamed Stream (St. Croix Model #795)  | 0.41           |
| 10084              | Unnamed Stream (St. Croix Model #84)   | 1.52           |
| 10093              | Unnamed Stream (St. Croix Model #93)   | 1.02           |

| HEC-RAS Model Name | Flooding Source Name                    | Length (miles) |
|--------------------|-----------------------------------------|----------------|
| 10095              | Unnamed Stream (St. Croix Model #95)    | 1.03           |
| 20116              | Unnamed Stream (St. John Model #116)    | 1.47           |
| 20123              | Unnamed Stream (St. John Model #123)    | 0.60           |
| 20190              | Unnamed Stream (St. John Model #190)    | 0.50           |
| 20029              | Unnamed Stream (St. John Model #29)     | 1.00           |
| 20036              | Unnamed Stream (St. John Model #36)     | 0.50           |
| 20038              | Unnamed Stream (St. John Model #38)     | 0.45           |
| 20039              | Unnamed Stream (St. John Model #39)     | 0.20           |
| 20058              | Unnamed Stream (St. John Model #58)     | 1.30           |
| 20061              | Unnamed Stream (St. John Model #61)     | 0.30           |
| 20007              | Unnamed Stream (St. John Model #7)      | 0.56           |
| 20072              | Unnamed Stream (St. John Model #72)     | 0.57           |
| 20077              | Unnamed Stream (St. John Model #77)     | 1.28           |
| 20084              | Unnamed Stream (St. John Model #84)     | 0.88           |
| 20086              | Unnamed Stream (St. John Model #86)     | 0.40           |
| 30103              | Unnamed Stream (St. Thomas Model #103)  | 1.10           |
| 30119              | Unnamed Stream (St. Thomas Model #119)  | 1.18           |
| 30132              | Unnamed Stream (St. Thomas Model #132)  | 0.54           |
| 30138*             | Unnamed Stream (St. Thomas Model #138)* | 0.52           |
| 30014              | Unnamed Stream (St. Thomas Model #14)   | 0.25           |
| 30140*             | Unnamed Stream (St. Thomas Model #140)* | 0.40           |
| 30143              | Unnamed Stream (St. Thomas Model #143)  | 0.60           |
| 30016              | Unnamed Stream (St. Thomas Model #16)   | 0.45           |
| 30160*             | Unnamed Stream (St. Thomas Model #160)* | 0.45           |

| HEC-RAS Model Name | Flooding Source Name                   | Length (miles) |
|--------------------|----------------------------------------|----------------|
| 30164              | Unnamed Stream (St. Thomas Model #164) | 1.31           |
| 30166              | Unnamed Stream (St. Thomas Model #166) | 0.33           |
| 30167              | Unnamed Stream (St. Thomas Model #167) | 0.61           |
| 30177              | Unnamed Stream (St. Thomas Model #177) | 1.40           |
| 30184              | Unnamed Stream (St. Thomas Model #184) | 0.44           |
| 30190              | Unnamed Stream (St. Thomas Model #190) | 0.81           |
| 30202              | Unnamed Stream (St. Thomas Model #202) | 0.85           |
| 30204              | Unnamed Stream (St. Thomas Model #204) | 0.61           |
| 30211              | Unnamed Stream (St. Thomas Model #211) | 1.01           |
| 30215              | Unnamed Stream (St. Thomas Model #215) | 0.36           |
| 30219              | Unnamed Stream (St. Thomas Model #219) | 0.27           |
| 30222              | Unnamed Stream (St. Thomas Model #222) | 0.30           |
| 30023              | Unnamed Stream (St. Thomas Model #23)  | 0.81           |
| 30233              | Unnamed Stream (St. Thomas Model #233) | 0.49           |
| 30242              | Unnamed Stream (St. Thomas Model #242) | 1.05           |
| 30246              | Unnamed Stream (St. Thomas Model #246) | 0.60           |
| 30025              | Unnamed Stream (St. Thomas Model #25)  | 0.79           |
| 30264              | Unnamed Stream (St. Thomas Model #264) | 1.10           |
| 30270              | Unnamed Stream (St. Thomas Model #270) | 0.97           |
| 30032              | Unnamed Stream (St. Thomas Model #32)  | 0.61           |
| 30033              | Unnamed Stream (St. Thomas Model #33)  | 0.16           |
| 30035              | Unnamed Stream (St. Thomas Model #35)  | 0.40           |
| 30039              | Unnamed Stream (St. Thomas Model #39)  | 0.43           |
| 30049              | Unnamed Stream (St. Thomas Model #49)  | 0.82           |

| HEC-RAS Model Name | Flooding Source Name                  | Length (miles) |
|--------------------|---------------------------------------|----------------|
| 30060              | Unnamed Stream (St. Thomas Model #60) | 0.92           |
| 30069              | Unnamed Stream (St. Thomas Model #69) | 0.66           |
| 30070              | Unnamed Stream (St. Thomas Model #70) | 0.21           |
| 30071              | Unnamed Stream (St. Thomas Model #71) | 0.25           |
| 30072              | Unnamed Stream (St. Thomas Model #72) | 0.30           |
| 30079              | Unnamed Stream (St. Thomas Model #79) | 1.31           |
| 30008              | Unnamed Stream (St. Thomas Model #8)  | 0.77           |
| 30087              | Unnamed Stream (St. Thomas Model #87) | 0.72           |
| 30009              | Unnamed Stream (St. Thomas Model #9)  | 0.26           |
|                    | TOTAL                                 | 160.61         |

<sup>\*</sup> Newly Modeled Flooding Source

# 5.2 Appendix B: Manning's n Values

Table 5-2: Summary of Manning's n Values

| Class | Description                                                                           | Utilized n-Value |
|-------|---------------------------------------------------------------------------------------|------------------|
| 0     | Background/water                                                                      | 0.013            |
| 1     | High-Medium Density Urban                                                             | 0.085            |
| 2     | Low-Medium Density Urban                                                              | 0.065            |
| 3     | Herbaceous Agriculture - Cultivated Lands                                             | 0.04             |
| 4     | Active Sun Coffee and Mixed Woody Agriculture                                         | 0.06             |
| 5     | Pasture, Hay or Inactive Agriculture (e.g. abandoned sugar cane)                      | 0.045            |
| 6     | Pasture, Hay or other Grassy Areas (e.g. soccer fields)                               | 0.04             |
| 7     | Drought Deciduous Open Woodland                                                       | 0.12             |
| 8     | Drought Deciduous Dense Woodland                                                      | 0.12             |
| 9     | Deciduous, Evergreen Coastal and Mixed Forest or Shrubland with Succulents            | 0.12             |
| 10    | Semi-Deciduous and Drought Deciduous Forest on Alluvium and Non-Carbonate Substrates  | 0.12             |
| 11    | Semi-Deciduous and Drought Deciduous Forest on Karst (includes semi-evergreen forest) | 0.12             |
| 12    | Drought Deciduous, Semi-deciduous and Seasonal Evergreen Forest on Serpentine         | 0.12             |
| 13    | Seasonal Evergreen and Semi-Deciduous Forest on Karst                                 | 0.12             |
| 14    | Seasonal Evergreen and Evergreen Forest                                               | 0.12             |
| 15    | Seasonal Evergreen Forest with Coconut Palm                                           | 0.12             |
| 16    | Evergreen and Seasonal Evergreen Forest on Karst                                      | 0.12             |
| 17    | Evergreen Forest on Serpentine                                                        | 0.12             |
| 18    | Elfin, Sierra Palm, Transitional and Tall Cloud Forest                                | 0.1              |
| 19    | Emergent Wetlands Including Seasonally Flooded Pasture                                | 0.045            |
| 20    | Salt or Mud Flats                                                                     | 0.03             |
| 21    | Mangrove                                                                              | 0.12             |

| 22 | Seasonally Flooded Savannahs and Woodlands                    | 0.09 |
|----|---------------------------------------------------------------|------|
| 23 | Pterocarpans Swamp                                            | 0.05 |
| 24 | Tidally Flooded Evergreen Dwarf-Shrubland and Forb Vegetation | 0.05 |
| 25 | Quarries                                                      | 0.03 |
| 26 | Coastal Sand and Rock                                         | 0.03 |
| 27 | Bare Soil (including bulldozed land)                          | 0.03 |

## 5.3 Appendix C: USVI Non-Standard Erosion Methodology

#### 5.3.1 General Overview

The non-standard erosion methodology applied to the beaches of St. Thomas and St. John was the same one applied to the beaches of St. Croix. The following appendix originated from a St. Croix Coastal Study memo dated November 18, 2002.

#### 5.3.2 Introduction

The sandy beaches of St. Croix were characterized by 1-3 foot veneer of sand overlaying rocky ledges. Through examination of pre- and post-storm photographs, it was determined that a portion of this sand veneer was removed by wave action to expose the rocky ledge beneath.

This assumption was verified by a review of available literature (Hubbard, D. K., et al, 1991, "The Effects of Hurricane Hugo on the Reefs and Associated Environments of St. Croix, U.S. Virgin Islands – A preliminary Assessment," <u>Journal of Coastal Research</u>, Vol. 8, pp 33-48), conversations with specialists in the field (Dr. Dennis Hubbard, November, 4, 2002), and site investigation (August, 2002). The erosion module of the CHAMP database did not have the capabilities to account for this type of storm-induced erosion. It was therefore determined that a non-standard approach to erosion modeling must be applied to the sandy beaches of St. Croix. The following is a brief description of the proposed methodology to model erosion on the sandy beaches of St. Croix:

### 5.3.3 Methodology

- 1. It was assumed that the mean amount removed from the sand veneer would be 2 feet along the beach, the mean value of the veneer depth. To model this, 1 foot would be removed from the 2 feet elevations and 2 feet would be removed from the landward elevations. The shoreline (0 foot station) would be preserved. Erosion modeling would stop at the first obstruction, defined as the limit of substantial vegetation or development, or where the eroded slope intersected the existing profile.
- 2. Elevation changes would be applied to the Adjusted Transect within CHAMP, thereby leaving the original Transect unchanged for comparison.
- The limit of vegetation or development would be determined by examination of aerial imagery and photographs taken during site investigation. Consideration would be given to the type and amount of vegetation as it affected its ability to withstand erosion.
- 4. If the first obstruction occurred within 50 feet of a station, that station would be the extent of the erosion. If the distance between the first obstruction and the previous station was greater than 50 feet, a station would be added to the Adjusted Transect, at the location of the obstruction, to define the extent of storm-induced erosion.

Tables 5-3 through 5-5 itemize the type of storm induced erosion applied to the Transects of the USVI in the effective coastal study.

Table 5-3: Storm Induced Erosion Applied in St. John

| Transect<br>No. | Description                                                                                                                                                                                                                         |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | USVI St. John                                                                                                                                                                                                                       |
| 1               | Vertical rock cliff; no vegetation                                                                                                                                                                                                  |
| 2               | Station at elevation 6 has been considered the limit of erosion due to vegetation. Station 4 ft. elevation is eroded 2 ft., station 2 ft. elevation is eroded 1 ft.                                                                 |
| 3               | Steep and rocky beach; no need for erosion analysis.                                                                                                                                                                                |
| 4               | Station at elevation 8 has been considered the limit of erosion due to resort facility in the area represented by the transect. Stations 6 and 4 ft. elevation are eroded 2 ft., station 2 ft. elevation is eroded 1 ft.            |
| 5               | Steep and rocky beach; no need for erosion analysis.                                                                                                                                                                                |
| 6               | Considering the transect description, no erosion has been applied.                                                                                                                                                                  |
| 7               | Vegetation starts at 10 feet elevation. Stations 10, 8, 6, and 4 feet elevation have eroded to 2 feet and 2 feet elevation has eroded to 1 foot.                                                                                    |
| 8               | Vegetation starts at 2 feet elevation. Station 2 feet elevation has eroded to 1 foot.                                                                                                                                               |
| 9               | Vegetation starts at 8 feet elevation. Stations 8, 6, 4 feet elevation have eroded 2 feet and 2 feet elevation has eroded to 1 foot.                                                                                                |
| 10              | Erosion has not been performed since vegetation starts at the shoreline.                                                                                                                                                            |
| 11              | Vegetation starts at 8 feet elevation. Stations 8, 6 and 4 feet elevation have eroded 2 feet and 2 feet elevation has eroded to 1 foot.                                                                                             |
| 12              | Vegetation starts at 6 feet elevation. Stations 6 and 4 feet elevation have eroded 2 feet and 2 feet elevation has eroded to 1 foot.                                                                                                |
| 14              | Vegetation starts at 8 feet and a point with the distance of 70 feet and elevation of 8 feet has been added to the data. Stations 8, 6 and 4 feet elevation have been eroded 2 feet and 2 feet elevation has been eroded to 1 foot. |
| 15              | Due to the steep slope of the shore no erosion has been applied                                                                                                                                                                     |
| 16              | Dense vegetation starts at 2 feet elevation. The 2 feet elevation has been eroded 1 foot.                                                                                                                                           |
| 17              | Due to the rocky and steep slope of the shore no erosion has been applied.                                                                                                                                                          |
| 18              | Due to the dense vegetation the 2 foot elevation has been eroded to 1 foot.                                                                                                                                                         |
| 19              | Due to the dense vegetation which starting at the landward edge of the beach, the 2 foot elevation has been eroded to 1 foot.                                                                                                       |
| 20              | Shoreline has been adjusted                                                                                                                                                                                                         |
| 21              | Due to the steep slope and dense vegetation of the shore no erosion has been applied                                                                                                                                                |

| Transect<br>No. | Description                                                                                                                                                                                                                |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22              | Due to the rocky and steep slope of the shore no erosion has been applied                                                                                                                                                  |
| 23              | Due to the vertical rock no erosion has been applied                                                                                                                                                                       |
| 24              | Due to the vertical rock no erosion has been applied.                                                                                                                                                                      |
| 25              | Vegetation starts at 12 feet elevation. Stations 12, 8, 6, and 4 feet elevation have eroded 2 feet and 2 feet elevation has eroded to 1 foot.                                                                              |
| 26              | Due to the steep slope of the shore and rocky surface of the beach no erosion has been applied.                                                                                                                            |
| 27              | Vegetation starts at 8 feet elevation. Stations 8, 6 and 4 feet elevation have eroded 2 feet and 2 feet elevation has eroded to 1 foot                                                                                     |
| 28              | There is sufficient vegetation to limit beach erosion at station 34.1 elevation 10 ft.  Therefore, stations at elevation 8, 6, 4 are eroded by 2 ft. and station at elevation 2 by 1 ft.                                   |
| 29              | Vegetation starts at 4 feet elevation. Stations 4 feet elevation have eroded 2 feet and 2 feet elevation has eroded to 1 foot.                                                                                             |
| 30              | Pocket beach is confined inland by rocky cliff starting at station 25.39 elevation 8 ft. This station represents the limit of erosion. Stations at elevation 6 and 4 are eroded by 2 ft., station at elevation 2 by 1 ft.  |
| 31              | Limit of erosion is represented by rocky cliff behind short beach. Station 28.51 at elevation 8 ft. represents the limit. Stations at elevation 6 and 4 ft. are eroded by 2 ft., station at elevation 2 is eroded by 1 ft. |
| 32              | Due to the dense vegetation no erosion applied.                                                                                                                                                                            |
| 33              | Due to the dense vegetation no erosion applied.                                                                                                                                                                            |
| 34              | Due to the steep slope dense vegetation no erosion applied.                                                                                                                                                                |
| 35              | Vegetation starts at 4 feet elevation. The 4 feet elevation has eroded 2 feet and 2 feet elevation has eroded to 1 foot.                                                                                                   |
| 36              | Vegetation starts at 2 feet elevation. The 2 feet elevation has eroded to 1 foot                                                                                                                                           |
| 37              | Due to rocky surface and steep slope of the beach no erosion analysis applied.                                                                                                                                             |
| 38              | Vegetation starts at 8 feet elevation and a point with the elevation of 7 feet and distance of 50 feet added. Stations 6 and 4 feet elevations have eroded 2 feet and 2 feet elevation has eroded to 1 foot.               |
| 39              | Vegetation starts at 6 feet elevation. Stations 6 and 4 feet elevation have eroded 2 feet and 2 feet elevation has eroded to 1 foot.                                                                                       |
| 40              | Steep and rocky slope; no erosion applied.                                                                                                                                                                                 |
| 41              | Vegetation starts at 10 feet elevation. Stations 8, 6 and 4 feet elevations have eroded 2 feet and 2 feet elevation has eroded to 1 foot.                                                                                  |
| 42              | Vegetation starts at 12 feet elevation. Stations 12, 10, 8, 6 and 4 feet elevations have eroded 2 feet and 2 feet elevation has eroded to 1 foot.                                                                          |

| Transect No. | Description                                                                                                                           |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 43           | Vegetation starts at 6 feet elevation. Stations 6 and 4 feet elevations have eroded 2 feet and 2 feet elevation has eroded to 1 foot. |
| 44           | Steep and rocky slope; no erosion applied.                                                                                            |
| 45           | Vegetation starts at 6 feet elevation. Stations 6 and 4 feet elevations have eroded 2 feet and 2 feet elevation has eroded to 1 foot. |

Table 5-4: Storm Induced Erosion Applied in St. Thomas

| Transect<br>No. | Description                                                                                                                                                                                |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | USVI St. Thomas                                                                                                                                                                            |
| 1               | Rocky cliff/bluff; erosion treatment not necessary                                                                                                                                         |
| 2               | Used non-standard erosion methodology. The Station 23, elevation 4 pair will be the limit of erosion. Only the 2 elevation will be eroded to 1.                                            |
| 3               | Used non-standard erosion methodology. The Station 3, elevation 4 pair will be the limit of erosion. Only the 2 elevation will be eroded to 1.                                             |
| 4               | Rocky cliff/bluff; erosion treatment not necessary                                                                                                                                         |
| 5               | Rocky cliff/bluff; erosion treatment not necessary                                                                                                                                         |
| 6               | Used non-standard erosion methodology. Inserted a point at station 55, elevation 2 pair and was used as the limit of erosion. Only the station 18, 2 elevation will be eroded to 1.        |
| 7               | Rocky cliff/bluff; erosion treatment not necessary                                                                                                                                         |
| 8               | Used non-standard erosion methodology. The Station 40, elevation 6 pair will be the limit of erosion and the 4 elevation will be eroded by 2 feet and the 2 elevation will be eroded to 1. |
| 9               | Used non-standard erosion methodology. The Station 41, elevation 4 pair will be the limit of erosion. Only the 2 elevation will be eroded to 1.                                            |
| 10              | Rocky cliff/bluff; erosion treatment not necessary                                                                                                                                         |
| 11              | Used non-standard erosion methodology. The Station 44, elevation 6 pair will be the limit of erosion and the 4 elevation will be eroded by 2 feet and the 2 elevation will be eroded to 1. |
| 12              | Rocky cliff/bluff; erosion treatment not necessary                                                                                                                                         |
| 13              | Rocky cliff/bluff; erosion treatment not necessary                                                                                                                                         |
| 14              | Rocky cliff/bluff; erosion treatment not necessary                                                                                                                                         |

| Transect<br>No. | Description                                                                                                                                                                                                                            |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15              | Used non-standard erosion methodology. The Station 44, elevation 6 pair will be the limit of erosion and the 4 elevation will be eroded by 2 feet and the 2 elevation will be eroded to 1.                                             |
| 16              | Rocky cliff/bluff; erosion treatment not necessary                                                                                                                                                                                     |
| 18              | Rocky cliff/bluff; erosion treatment not necessary                                                                                                                                                                                     |
| 19              | Rocky cliff/bluff; erosion treatment not necessary                                                                                                                                                                                     |
| 20              | Used non-standard erosion methodology. Inserted a point at station 74.5, elevation 6 pair and was used as the limit of erosion. The station 6 and 4 elevations will be eroded 2 feet and the 2 foot elevation will be eroded to 1.     |
| 21              | Rocky cliff/bluff; erosion treatment not necessary                                                                                                                                                                                     |
| 22              | Used non-standard erosion methodology. Inserted a point at station 52.6, elevation 8 pair and was used as the limit of erosion. The station 8, 6, and 4 elevations will be eroded 2 feet and the 2 foot elevation will be eroded to 1. |
| 23              | Rocky cliff/bluff; erosion treatment not necessary                                                                                                                                                                                     |
| 24              | Used non-standard erosion methodology. Inserted a point at station 67.8, elevation 6 pair and was used as the limit of erosion. The station 6, and 4 elevations will be eroded 2 feet and the 2 foot elevation will be eroded to 1.    |
| 25              | Revetment; erosion treatment not necessary                                                                                                                                                                                             |
| 26              | Used non-standard erosion methodology. The Station 21, elevation 4 pair will be the limit of erosion and only the 2 elevation will be eroded to 1.                                                                                     |
| 27              | Docks; erosion treatment not necessary                                                                                                                                                                                                 |
| 28              | Mangrove; erosion treatment not necessary                                                                                                                                                                                              |
| 29              | Used non-standard erosion methodology. Inserted a point at station 13.2, elevation 2 pair and was used as the limit of erosion. Only the 2 foot elevation will be eroded to 1.                                                         |
| 30              | Rocky cliff/bluff; erosion treatment not necessary                                                                                                                                                                                     |
| 31              | Used non-standard erosion methodology. The Station 16, elevation 4 pair will be the limit of erosion and only the 2 elevation will be eroded to 1.                                                                                     |
| 32              | Used non-standard erosion methodology. The Station 22, elevation 4 pair will be the limit of erosion and only the 2 elevation will be eroded to 1.                                                                                     |
| 33              | Rocky cliff/bluff; erosion treatment not necessary                                                                                                                                                                                     |
| 34              | Rocky cliff/bluff; erosion treatment not necessary                                                                                                                                                                                     |

| Transect<br>No. | Description                                                                                                                                                                                |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 35              | Used non-standard erosion methodology. The Station 49, elevation 6 pair will be the limit of erosion and the 4 elevation will be eroded by 2 feet and the 2 elevation will be eroded to 1. |
| 37              | Rocky cliff/bluff; erosion treatment not necessary                                                                                                                                         |
| 38              | Rocky cliff/bluff; erosion treatment not necessary                                                                                                                                         |
| 39              | Docks; erosion treatment not necessary                                                                                                                                                     |
| 40              | Mangrove; erosion treatment not necessary                                                                                                                                                  |
| 41              | Mangrove; erosion treatment not necessary                                                                                                                                                  |
| 42              | Mangrove; erosion treatment not necessary                                                                                                                                                  |
| 43              | Mangrove; erosion treatment not necessary                                                                                                                                                  |
| 44              | Mangrove; erosion treatment not necessary                                                                                                                                                  |
| 46              | Rocky cliff/bluff; erosion treatment not necessary                                                                                                                                         |
| 49              | Rocky cliff/bluff; erosion treatment not necessary                                                                                                                                         |
| 51              | Seawall; erosion treatment not necessary                                                                                                                                                   |
| 52              | Seawall; erosion treatment not necessary                                                                                                                                                   |
| 53              | Seawall; erosion treatment not necessary                                                                                                                                                   |
| 54              | Seawall; erosion treatment not necessary                                                                                                                                                   |
| 55              | Revetment; erosion treatment not necessary                                                                                                                                                 |
| 56              | Rocky cliff/bluff; erosion treatment not necessary                                                                                                                                         |
| 57              | Rocky cliff/bluff; erosion treatment not necessary                                                                                                                                         |
| 58              | Armored shoreline; erosion treatment not necessary                                                                                                                                         |
| 59              | Revetment; erosion treatment not necessary                                                                                                                                                 |
| 60              | Used non-standard erosion methodology. The Station 33, elevation 4 pair will be the limit of erosion and only the 2 elevation will be eroded to 1.                                         |
| 61              | Rocky cliff/bluff; erosion treatment not necessary                                                                                                                                         |

| Transect<br>No. | Description                                                                                                                                        |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 62              | Rocky cliff/bluff; erosion treatment not necessary                                                                                                 |
| 67              | Used non-standard erosion methodology. The Station 30, elevation 4 pair will be the limit of erosion and only the 2 elevation will be eroded to 1. |

Table 5-5: Storm Induced Erosion Applied in St. Croix

| Transect<br>No. | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                 | USVI St. Croix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 1               | Erosion treatment not necessary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 2               | Although there are some ornamental palm trees out on the beach, there is not sufficient vegetation to protect the beach from storm-induced erosion, therefore, the erosion of the sandy beach should continue inland to the 90 foot station, where the main beach resort facility is located, seen in the aerial image. The Station 99, Elevation 12 pair will be the limit of erosion, just inland from the 90 foot station, and the 10, 8, 6, 4 elevations will be eroded by 2 feet and the 2 elevation will be eroded by 1 foot to preserve the shape of the beach profile. |  |
| 3               | Erosion treatment not necessary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 4               | There is sufficient vegetation to protect the beach from storm-induced erosion beginning at the 15 foot station, where the small beach meets dense vegetation, seen in the aerial image. The Station 16, Elevation 4 pair will be the limit of erosion, just inland from the 15 foot station, and only the 2 elevation will be eroded by 1 foot to preserve the shape of the beach profile.                                                                                                                                                                                    |  |
| 5               | Erosion treatment not necessary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 6               | There is sufficient vegetation to protect the beach from storm-induced erosion beginning at the 70 foot station, where the small beach meets dense vegetation, seen in the aerial image. The Station 108, Elevation 8 pair will be the limit of erosion, just inland from the 70 foot station, and the 6 and 4 elevations will be eroded by 2 feet and only the 2 elevation will be eroded by 1 foot to preserve the shape of the beach profile.                                                                                                                               |  |
| 7               | Erosion treatment not necessary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 8               | Erosion treatment not necessary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 9               | There are sufficient vegetation and buildings to protect the beach from storm-induced erosion beginning at the 55 foot station, where the small beach meets vegetation and buildings, seen in the aerial image. The inserted Station 82, Elevation 8 pair will be the limit of erosion, and the 8, 6, and 4 elevations will be eroded by 2 feet and only the 2 elevation will be eroded by 1 foot to preserve the shape of the beach profile.                                                                                                                                  |  |

| Transect |                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No.      | Description                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 10       | There is sufficient vegetation to protect the beach from storm-induced erosion beginning at the 15 foot station, where the small beach meets dense vegetation, seen in the aerial image. The Station 17, Elevation 4 pair will be the limit of erosion, just inland from the 15 foot station, and only the 2 elevation will be eroded by 1 foot to preserve the shape of the beach profile                                                  |
| 11       | Erosion treatment not necessary                                                                                                                                                                                                                                                                                                                                                                                                             |
| 12       | Erosion treatment not necessary                                                                                                                                                                                                                                                                                                                                                                                                             |
| 13       | Erosion treatment not necessary                                                                                                                                                                                                                                                                                                                                                                                                             |
| 14       | There is sufficient vegetation to protect the beach from storm-induced erosion beginning at the 20 foot station, where the small beach meets dense vegetation, seen in the aerial image. The Station 21, Elevation 10 pair will be the limit of erosion, just inland from the 20 foot station, and the 8, 6, 4 elevations will be eroded by 2 feet and the 2 elevation will be eroded by 1 foot to preserve the shape of the beach profile. |
| 15       | There is sufficient vegetation to protect the beach from storm-induced erosion beginning at the 45 foot station, where the small beach meets dense vegetation, seen in the aerial image. The Station 39, Elevation 10 pair will be the limit of erosion, just seaward of the 45 foot station, and the 8, 6, 4 elevations will be eroded by 2 feet and the 2 elevation will be eroded by 1 foot to preserve the shape of the beach profile.  |
| 16       | There is sufficient vegetation to protect the beach from storm-induced erosion beginning at the 30 foot station, where the small beach meets dense vegetation, seen in the aerial image. The Station 29.7, Elevation 6 pair (inserted point) will be the limit of erosion, the 4 elevation will be eroded by 2 feet and the 2 elevation will be eroded by 1 foot to preserve the shape of the beach profile.                                |
| 17       | There is sufficient vegetation to protect the beach from storm-induced erosion beginning at the 45 foot station, where the small beach meets dense vegetation, seen in the aerial image. The Station 45, Elevation 6 pair (inserted point) will be the limit of erosion, the 4 elevation will be eroded by 2 feet and the 2 elevation will be eroded by 1 foot to preserve the shape of the beach profile                                   |
| 18       | There is sufficient vegetation to protect the beach from storm-induced erosion beginning at the 20 foot station, where the small beach meets dense vegetation, seen in the aerial image. The Station 10, Elevation 4 pair will be the limit of erosion, just inland from the 10 foot station, the 2 elevation will be eroded by 1 foot to preserve the shape of the beach profile.                                                          |
| 19       | Erosion treatment not necessary                                                                                                                                                                                                                                                                                                                                                                                                             |
| 20       | There is sufficient vegetation to protect the beach from storm-induced erosion beginning at the 40 foot station, where the small beach meets dense vegetation, seen in the aerial image. The Station 40, Elevation 6.1 pair (inserted point) will be the limit of erosion, the 6, 4 elevations will be eroded by 2 feet and the 2 elevation will be eroded by 1 foot to preserve the shape of the beach profile.                            |

| Transect<br>No. | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21              | Although there are some ornamental palm trees out on the beach there is not sufficient vegetation to protect the beach from storm-induced erosion, therefore, the erosion of the sandy beach should continue inland to the 57 foot station. The Station 57, Elevation 6.3 pair will be the limit of erosion where the small beach meets vegetation. 6, 4 elevations will be eroded by 2 feet and the 2 elevation will be eroded by 1 foot to preserve the shape of the beach profile.                                                |
| 22              | There is sufficient vegetation to protect the beach from storm-induced erosion beginning at the 50 foot station, where the small beach meets dense vegetation, seen in the aerial image. The Station 73, Elevation 8 pair will be the limit of erosion, just seaward from the 73 foot station, and the 6, 4 elevations will be eroded by 2 feet and the 2 elevation will be eroded by 1 foot to preserve the shape of the beach profile.                                                                                             |
| 23              | Rocky bluff; erosion treatment not necessary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 24              | While there is not sufficient vegetation to protect the beach from storm-induced erosion, the erosion of the sandy beach should continue inland to Station 58 where buildings are located, as seen in the aerial image. The Station 58, Elevation 8.1ft pair (station/elevation point manually added to transect) will be the limit of erosion. The 8, 6, and 4ft elevations will be eroded by 2 feet, and the 2ft elevation will be eroded by 1 foot to preserve the shape of the beach profile.                                    |
| 25              | There is sufficient vegetation to protect the beach from storm-induced erosion beginning at the 73 foot station, where the small beach meets dense vegetation, as seen in the aerial image. The Station 97, Elevation 6ft pair will be the limit of erosion, and the 4ft elevation will be eroded by 2 feet (except for the Station 9.94, Elevation 2 ft. pair which was removed to remove berm crest) and the 2ft elevation will be eroded by 1 foot to preserve the shape of the beach profile.                                    |
| 26              | There is sufficient vegetation to protect the beach from storm-induced erosion beginning at the 25 foot station, where the small beach meets dense vegetation, as seen in the aerial image. The Station 26, Elevation 6ft pair will be the limit of erosion, and the preceding 6ft and 4ft elevations will be eroded by 2 feet and the 2ft elevation will be eroded by 1 foot to preserve the shape of the beach profile. The Station 14.3, Elevation 6 and Station 17.8, Elevation 6 pairs will be removed to remove the berm crest |
| 27              | There is sufficient vegetation to protect the beach from storm-induced erosion beginning at the 72 foot station, on the seaward face of the berm, as seen in the aerial image. The Station 72, Elevation 10ft pair will be the limit of erosion, and the 8, 6 and 4ft elevations will be eroded by 2 feet and the 2ft elevation will be eroded by 1 foot to preserve the shape of the beach profile.                                                                                                                                 |
| 28              | Mangrove area, erosion treatment not necessary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 29              | There is sufficient vegetation to protect the beach from storm-induced erosion beginning at the 45 foot station, where the small beach meets dense vegetation, as seen in the aerial image. The Station 45, Elevation 14ft pair will be the limit of erosion, and the 12, 10, 8, 6 and 4ft elevations will be eroded by 2 feet and the 2ft elevation will be eroded by 1 foot to preserve the shape of the beach profile.                                                                                                            |

| Transect<br>No. | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30              | There is sufficient vegetation to protect the beach from storm-induced erosion beginning at the 89 foot station, where the small beach meets dense vegetation, as seen in the aerial image. The Station 89, Elevation 10ft pair will be the limit of erosion, and the 8, 6 and 4ft elevations will be eroded by 2 feet and the 2ft elevation will be eroded by 1 foot to preserve the shape of the beach profile                                                             |
| 31              | There is sufficient vegetation to protect the beach from storm-induced erosion beginning at the 140 foot station, where the small beach meets dense vegetation, as seen in the aerial image. The Station 140, Elevation 8ft pair (station/elevation point manually added to transect) will be the limit of erosion, and the 8ft, 6ft, and 4ft elevations will be eroded by 2 feet and the 2ft elevation will be eroded by 1 foot to preserve the shape of the beach profile. |
| 32              | Rocky bluff; erosion treatment not necessary                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 33              | Revetment; erosion treatment not necessary                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 34              | Mangrove area; erosion treatment not necessary                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 35              | Mangrove area; erosion treatment not necessary                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 36              | Mangrove area; erosion treatment not necessary                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 37              | There is sufficient vegetation to protect the beach from storm-induced erosion beginning at the 53 foot station, where the small beach meets dense vegetation, as seen in the aerial image. The Station 53, Elevation 10ft pair will be the limit of erosion, and the 8ft, 6ft and 4ft elevations will be eroded by 2 feet and the 2ft elevation will be eroded by 1 foot to preserve the shape of the beach profile.                                                        |
| 38              | There is sufficient vegetation to protect the beach from storm-induced erosion beginning at the 73 foot station, where the small beach meets dense vegetation, as seen in the aerial image. The Station 73, Elevation 8ft pair will be the limit of erosion, and the 6ft and 4ft elevations will be eroded by 2 feet and the 2ft elevation will be eroded by 1 foot to preserve the shape of the beach profile.                                                              |
| 39              | Rocky outcrop beach; erosion treatment not necessary                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 40              | Rocky outcrop beach; erosion treatment not necessary                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 41              | There is sufficient vegetation to protect the beach from storm-induced erosion beginning at the 172 foot station, where the small beach meets dense vegetation, as seen in the aerial image. The Station 172, Elevation 4ft pair (station/elevation point manually added to transect) will be the limit of erosion, and the preceding 4ft elevation will be eroded by 2 feet and the 2ft elevation will be eroded by 1 foot to preserve the shape of the beach profile.      |

| Transect<br>No. | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 42              | There is sufficient vegetation to protect the beach from storm-induced erosion beginning at the 38 foot station, where the small beach meets dense vegetation, as seen in the aerial image. The Station 45, Elevation 8ft pair will be the limit of erosion, and the 6ft and 4ft elevations will be eroded by 2 feet and the 2ft elevation will be eroded by 1 foot to preserve the shape of the beach profile.                                                                                         |
| 43              | There is not sufficient vegetation to protect the beach from storm-induced erosion prior to the berm. The Station 196, Elevation 6ft pair will be the limit of erosion, the 8 ft elevations will be eroded by 1 feet, the 6 ft and 4ft elevation will be eroded by 2 feet and the 2ft elevation will be eroded by 1 foot to preserve the shape of the beach profile.                                                                                                                                    |
| 44              | Seawall; erosion treatment not necessary                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 45              | Seawall; erosion treatment not necessary                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 46              | While there is not sufficient vegetation to protect the beach from storm-induced erosion, the erosion of the sandy beach should continue inland to the 123 foot station where the road is located, as seen in the aerial image. The Station 123, Elevation 6ft pair will be the limit of erosion, and the 4ft elevation will be eroded by 2 feet, and the 2ft elevation will be eroded by 1 foot to preserve the shape of the beach profile.                                                            |
| 47              | Rocky outcrop beach; erosion treatment not necessary                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 48              | There is sufficient vegetation to protect the beach from storm-induced erosion, beginning at the 73 foot station, where the small beach meets dense vegetation, as seen in the aerial image. The Station 73, Elevation 6ft pair (station/elevation point manually added to transect) will be the limit of erosion, and the Station 71, Elevation 4ft pair will be removed from the transect to smooth the slope. The 2ft elevation will be eroded by 1 foot to preserve the shape of the beach profile. |
| 49              | There is sufficient vegetation to protect the beach from storm-induced erosion beginning at the 60 foot station, where the small beach meets dense vegetation, as seen in the aerial image. The Station 76, Elevation 4ft pair will be the limit of erosion, and the 2ft elevation will be eroded by 1 foot to preserve the shape of the beach profile.                                                                                                                                                 |
| 50              | Rocky outcrop beach, erosion treatment not necessary                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 51              | There is sufficient vegetation to protect the beach from storm-induced erosion beginning at the 40 foot station, where the small beach meets dense vegetation, as seen in the aerial image. The Station 51, Elevation 6ft pair will be the limit of erosion, and the 4ft elevation will be eroded by 2 feet and the 2ft elevation will be eroded by 1 foot to preserve the shape of the beach profile.                                                                                                  |