

Flood Risk Project

Orleans County, New York, Hydraulics Meeting

October 29, 2020

Presentation Agenda

Recap/Refresh

Hydraulics Analysis Review Path Forward

What Have We Done So Far? Recap/Refresh

This Project Scope

- First time digital countywide maps
- Additional flooding sources analyzed
 - Detailed (AE) studies 5 streams, 36 miles
 - Approximate (A) studies multiple streams, 241 miles
 - Redelineation (AE) 3 streams,
 17 miles
- Incorporates coastal mapping
- 14 affected communities
- ▶ 86 map panels
- Multiple touchpoints

Scope

- 5 Detailed (AE) Streams 36 miles total
 - Oak Orchard Creek 10.5 miles
 - Fish Creek 5.8 miles
 - Johnson Creek 14.7 miles
 - Sandy Creek 3 miles
 - Yanty Creek 1.8 miles
- Multiple Approximate (A) Streams –
 200+ miles total. Notable Streams:
 - Oak Orchard Creek 16 miles
 - Johnson Creek 4 miles
 - Marsh Creek 7 miles
 - Otter Creek 6.7 miles
 - Sandy Creek 2 miles
 - Yanty Creek 1 miles
 - East Branch Sandy Creek 17.2 miles
 - West Branch Sandy Creek 14.6 miles

26 miles of Erie Canal - Approximate study

Hydrology Update

- Rainfall-Runoff Modeling for all flooding sources
- Since Sep, 2019 hydrology webinar,
 - Additional calibration and validation performed.
 - Upper Oak Orchard analyses upgraded to account for flow attenuation due to large wetlands and storage areas.
 - Two dimensional (2D) hydraulic modeling employed
- Discharges developed for
 - 10%, 4%, 2%, 1%, 1%+, 1%-, 0.2%
- Erie Canal Regulated flow obtained from NY Power Authority

Calibration plot at Kenyonville, NY Gage

Where are we now? Hydraulics Analysis Review

Flood Hazard Analysis

Hydrology

Volume of water? Peak Flows?

When will storm water or runoff make it to the stream?

Hydraulics

Will the stream in question be able to convey all storm water or runoff that arrives?

Floodplain Mapping

What areas of a community will be inundated based on engineering analysis?

Data Sources - Terrain

- 2014 Orleans County FEMA LiDAR
- > 2011 Genesee County LiDAR
- 2 meter Digital Elevation Model (DEM) Developed
- Provided overbank elevations for hydraulic model
- Channel geometry for AE streams provided field survey
- Used for mapping the flood hazard boundaries

Data Sources – Field Survey

- Conducted for AE Streams only
- Included Channel and bridge/culvert geometry data to supplement LiDAR
- 'A' streams not included
- A separate field Reconnaissance conducted to assess the site and floodplain conditions.

Data Sources – Roughness Coefficients

- Mannings "n" model parameter
- For approximate reaches, land use from National Land Cover Database (2016)
- For detailed reaches, further refinement using survey photos and aerial imagery

Description	Manning's "n"
Open Water	0.025
Developed, Low Density	0.07
Developed, Medium Density	0.08
Developed, High Density	0.09-0.12
Woods / Forest	0.07-0.12
Grassland / Herbaceous	0.04
Pasture / Hay / Cultivated Crop	0.04
Channel	0.025-0.055

EU_00_300_DSFACE.JPG

KEU_00_300_USCH.JPG

DEUDEDD

KEU_00_300_USFACE.JP

Steam:	Keska Lake Outlet											_	Project	t			_	Yates	County	- Villa	ge of P	of Penn Yan					
Designed by				Dute;	7/20	20.20	Check	ed by:Z	JAL .		Date:	7/20	2020								Page	1	of	1			
-		_			_	_		4	_	_	-2		_		a		_				_	-	_				
(COLUMN)	Description of Reach, Station, or Cross-section		Best	n "n" .		50	rface in	regular	ay :	Varia and Sh	Bons in aps of sector	Cross-	Obstructions				Vegetation				Meandering			Total "n" (nbtn1tn2te			
		0.020	0.025	0.024	0.024	0.024	0.024	0.028	0.000	0.005	0.010	0.020	0.000	0.005	0.010	0.000	0.010	0.020	0.040	0.005	0.010	0.025	0.050	1.000	1.150	1.300	*04/185
		the sector	Rock	Pro Gravel	Cotthe	Smoth	Mnor	Mo dentro	Seren	Straight	Occurational Shifting	Frequent	Negligito	Mar	Approvide 0	Genes	Inu	Wedam	2	Very High	Mmr 1.0 0 1.22	Appreciatio	Servers 1.52+				
US & DS	Let Overback			_	_	_		_		-	_	_	_		_	_	_	_									
	Channel				0.030		0.005				0.006		0.000			_	0.005				1.000			0.046			
	föght Overtænk																			2 - 22				6			

Hydraulics Methodology

- USACE's HEC-RAS 5.0.7 used
- One-Dimensional (1D) Steady State Analyses
 - 4 AE streams (Johnson, Fish, Yanty and Sandy)
 - Lower Oak Orchard
 - Most approximate streams
- Two-Dimensional Analyses
 - Upper Oak Orchard Creek AE
 - Marsh Creek, Otter Creek A
 - All 'A' streams in Upper Oak Orchard watershed
- Survey data included for AE
- Multiple frequency runs included
- AE streams include floodway run

Floodway Analysis

- Detailed Streams only
- Encroachments placed to achieve target 1.0' rise

Hydraulics Report

Hydraulics Report

Orleans County, New York MIP Case Number 19-02-0011S Deliverable

Contract No. HSFE60-15-D-0005 Task Order 70FBR2-18-F00000162

Date: October 31, 2020

Table of Contents

1.0	Intro	oduction	1
1.1	S	tudy Area	1
1.2	Р	urpose and Type of Study	3
1.3	S	cope of Work	
1.4	Ρ	revious Studies For Seneca Watershed	5
2.0	Hyd	raulics Analysis	5
2.1	S	tudy Limits and Methodology	5
2.2	D	ischarges	5
2.3	Т	opographic Data	5
2.4	F	ield Survey	5
2.5	A	erial Imagery	6
2.6	D	etailed 1D Methodology	6
2	.6.1	Boundary Conditions	6
2	.6.2	Cross Sections	7
2	.6.3	Structures	7
2	.6.4	Expansion and Contraction Loss Coefficients	8
2	.6.5	Ineffective and Storage Areas	8
2	.6.6	Channel Roughness Values	8
2	.6.7	Floodway	10
2	.6.8	2D Modeling for 1% and 0.2% AC Events at Overtopping Culverts	
2	.6.9	2D Modeling in 1% and 0.2% Annual Chance Mapping	11
2	.6.10	McKinley-Lincoln Avenue Sheet Flow	12
2.7	A	pproximate 1D Methodology	14
2	.7.1	Boundary Conditions	14
2	.7.2	Cross Sections	14
2	.7.3	Structures	14
2	.7.4	Ineffective Areas	14
2	.7.5	Channel Roughness Values	14
2	.7.6	Expansion and Contraction	14

Orleans County, New York - Hydraulics Report

Page i

Results of the Study

- New countywide floodplains data
 - Expanded floodplain coverage
 - Added additional streams with Base Flood Elevations
 - Continuous modeling and mapping outside of community boundaries
 - To support future community development
 - Includes 500-year floodplain

Floodplain Mapping Comparisons

New countywide digital data

- Previous maps produced in 1970s-1980s
- <u>Reason for changes</u> in Floodplains and Base Flood Elevations (BFEs)
 - New Topography
 - Channel and Structure Survey
 - Changes to Land Use
 - Changes to Rainfall
 - Detailed Hydrologic and Hydraulic Analysis

Town of Yates & Village of Lyndonvile

Increasing Resilience Together

Town of Gaines & Carlton, Village of Albion

Towns of Kendall & Murray, Village of Holley

Village of Medina, Village of Albion

19

FEMA

Town Ridgeway, Village of Medina

Town Shelby, Village of Medina

Towns of Albion & Barre, Village of Albion

Town of Clarendon

What's Next? Path Forward

Next Steps

Overall Flood Risk Project Timeline

Contacts

FEMA

Project Monitor

- Shudipto Rahman
- 202-702-4273
- shudipto.rahman@fema.dhs.gov

Outreach Coordinator

- Stephanie Gootman
- 202-802-3137
- stephanie.gootman@fema.dhs.gov

STARR II (Technical Partner)

Project Manager

- Srikanth Koka
- 703-849-0584
- skoka@dewberry.com

Regional Support Center Lead

- Curtis Smith
- 646-490-3929
- curtis.smith@stantec.com

Questions? Comments?

Thank you!

