

Flood Risk Project

Yates County, New York, Hydraulics Meeting

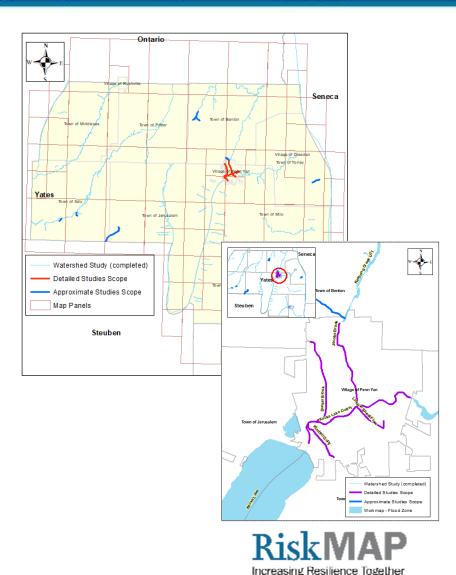
October 9, 2020

Presentation Agenda

Recap/Refresh

Hydraulics Analysis Review

Path Forward



What Have We Done So Far? Recap/Refresh

This Project Scope

- First time digital countywide maps, includes 211 miles from 2018 study
- Additional flooding sources studied
 - 5.1 miles Detailed (AE) streams
 - 5.4 miles Approximate (A) streams
- 5 Detailed (AE) study Streams (All within Village of Penn Yan)
 - Keuka Lake Outlet -1.8 miles
 - Jacobs Brook -1.1 miles
 - Kimbell Gully 0.6 miles
 - Sucker Brook 1.1 miles
 - Lincoln Sheet Flow 0.5 mile

Hydrology Update

Since Sep, 2019 hydrology webinar,

- Received additional data from USACE and Keuka Lake Association
- USACE Gate operational rating curves
- Lake Association Lake historic water level data
- Lake levels for Keuka Lake & outflows re-computed.
 - Lake levels increased from 2018 study but below effective levels
 - Keuka Lake Outlet discharges decreased from Sep, 2019 update, now within effective study range

Tributary discharges

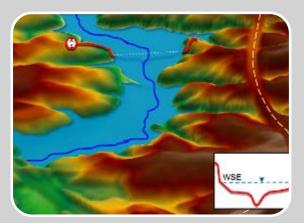
FEMA

- increased slightly from Sep, 2019 update, but still below effective.
- Jacobs Brook discharges decreased

Keuka Lake 100-Yr Level (feet, NAVD88)

This Study	718.3
2018 Study	717.4
Effective FIS	720.3

Keuka Lake Outl Discharge (
This update	1640
Sep 2019 update	4043
Effective FIS	1800



Where are we now? Hydraulics Analysis Review

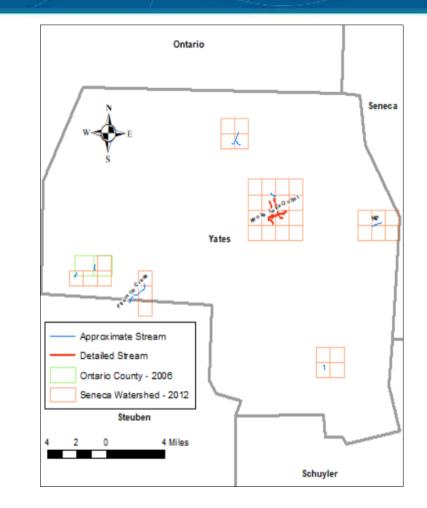
Flood Hazard Analysis

Hydrology

Volume of water? Peak Flows?

When will storm water or runoff make it to the stream?

Hydraulics

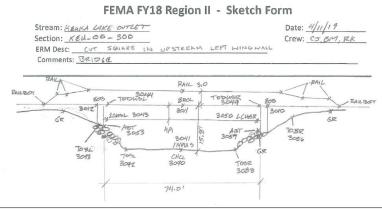

Will the stream in question be able to convey all storm water or runoff that arrives?

Floodplain Mapping

What areas of a community will be inundated based on engineering analysis?

Data Sources - Terrain

- 2012 FEMA LiDAR Data
- > 2006 Ontario County LiDAR
- 2 meter Digital Elevation Model (DEM) Developed
- Provided overbank elevations for hydraulic model
- Channel geometry for AE streams provided field survey
- Used for mapping the flood hazard boundaries



Data Sources – Field Survey

- Conducted for AE Streams only
- Included Channel and bridge/culvert geometry data to supplement LiDAR
- 'A' streams not included
- A separate field Reconnaissance conducted to assess the site and floodplain conditions.

Data Sources – Roughness Coefficients

- Mannings "n" model parameter
- For approximate reaches, land use from National Land Cover Database (2016)
- For detailed reaches, further refinement using survey photos and aerial imagery

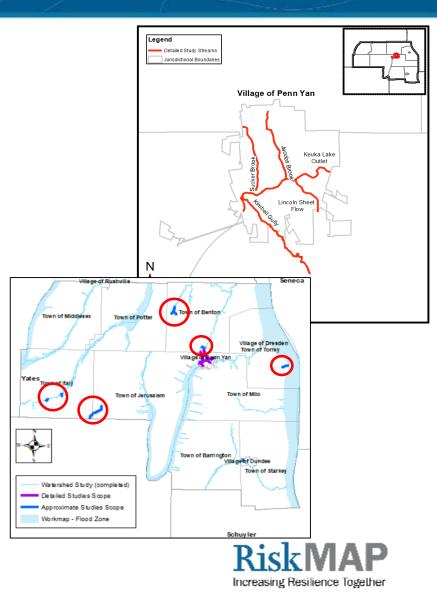
Description	Manning's "n"
Open Water	0.025
Developed, Low Density	0.07
Developed, Medium Density	0.08
Developed, High Density	0.09-0.12
Woods / Forest	0.07-0.12
Grassland / Herbaceous	0.04
Pasture / Hay / Cultivated Crop	0.04
Channel	0.025-0.055
c25.R744	

KEU_00_300_USCH.JPO

DEUDEDDU

KEU 00 300 USFACE.JP

beam: Keuka Lake Outlet Project: Yates County - Villag								ge of Penn Yan																
Designed by: Date: 7/20					2020 Checked by:ZJL				Date: 7/20/			9/29/20						Page 1 of			1			
Columna				ó	_			at .	-		n2			n	3			ni	02			nő	_	n
fleast	Description of Reach, Station, or Cross-section	Besin "n"				Surface Irregularity				Variations in Size and Shape of Cross- section			Obstructions				Vegetation				. 16	anderi	Total "n" (nb+n1+n2+n3	
		0.020	0.025	0.024	0.028	0.000	0.005	0.010	0.020	0.000	0.005	0.010	0.000	0.010							1.000	1.150	1.300	*o4/*a5
		-	Rock	Pro Gravel	Cotthe	Smooth	Mnor	Mb derafts	Serves	Straight	Occa microsoft Shinking	Frequent	Negligito	W	producto	Genera	Iow	Wedur	ş	Very High	Mms 1.0 b 1.22	Appreciatio	Gerosen 1.52+	
US & DS	Let Overback	_		_	_	_		_		-		_						_	_	_				8
	Channel	-			0.030		0.005				0.006		0.000				0.006				1.000			0.045
	föght Overtænk																							6


Hydraulics Methodology

Detailed (AE) Streams

- 5 Streams, 5.1 miles, all in Penn Yan
- USACE's HEC-RAS 5.0.7 used for model development
- Primary method: One-Dimensional (1D) Steady State Analyses
- 2D modeling used for Lincoln Sheet Flow and to supplement 1D at some Culvert Crossings
- Detailed channel and structure surveys included
- Multiple frequencies and floodways included

Approximate (A) Streams

- 5.4 miles spread out
- HEC-RAS 5.0.7, 1D steady state analyses
- No detailed survey included
- Multiple frequencies included but no floodway



FEMA

Floodway Analysis

- Detailed Streams only
- Encroachments placed to achieve target 1.0' rise

Hydraulics Report

Hydraulics Report

Yates County, New York MIP Case Number 19-02-0013S Deliverable

Contract No. HSFE60-15-D-0005

Task Order 70FBR2-18-F00000162

Date: September 30, 2020

Table of Contents

1.0 Int	troduction1
1.1	Study Area1
1.2	Purpose and Type of Study
1.3	Scope of Work
1.4	Previous Studies For Seneca Watershed
2.0 Hy	/draulics Analysis
2.1	Study Limits and Methodology5
2.2	Discharges
2.3	Topographic Data
2.4	Field Survey
2.5	Aerial Imagery
2.6	Detailed 1D Methodology
2.6.1	Boundary Conditions
2.6.2	2 Cross Sections
2.6.3	3 Structures
2.6.4	Expansion and Contraction Loss Coefficients
2.6.5	5 Ineffective and Storage Areas
2.6.6	Channel Roughness Values
2.6.7	7 Floodway
2.6.8	2D Modeling for 1% and 0.2% AC Events at Overtopping Culverts
2.6.9	2D Modeling in 1% and 0.2% Annual Chance Mapping11
2.6.1	10 McKinley-Lincoln Avenue Sheet Flow
2.7	Approximate 1D Methodology
2.7.1	Boundary Conditions
2.7.2	2 Cross Sections
2.7.3	3 Structures
2.7.4	Ineffective Areas
2.7.5	5 Channel Roughness Values14
2.7.6	Expansion and Contraction
Yates Co	unty, New York - Hydraulics Report Page i

Results of the Study

- New countywide floodplains data
 - Expanded floodplain coverage
 - Added additional streams with Base Flood Elevations
 - Continuous modeling and mapping outside of community boundaries
 - To support future community development
 - Includes 500-year floodplain

Floodplain Mapping Comparisons

New countywide digital data

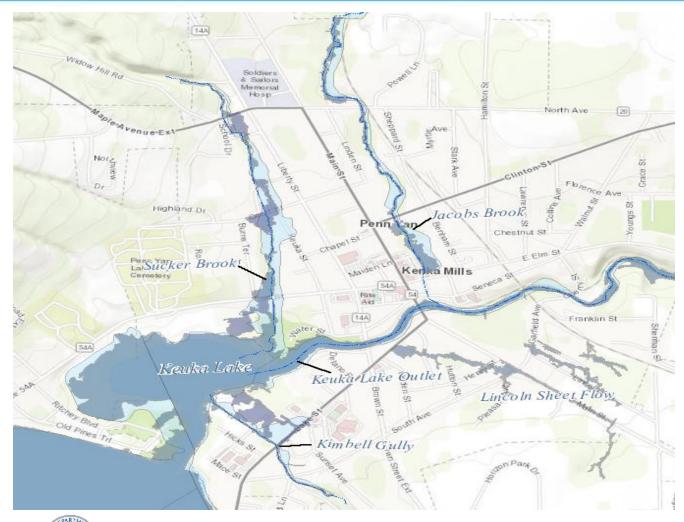
- Previous maps produced in 1970s-1980s
- <u>Reason for changes</u> in Floodplains and Base Flood Elevations (BFEs)
 - New Topography
 - Channel and Structure Survey
 - Changes to Land Use
 - Changes to Rainfall
 - Detailed Hydrologic and Hydraulic Analysis

Summary at Community level

Current Study

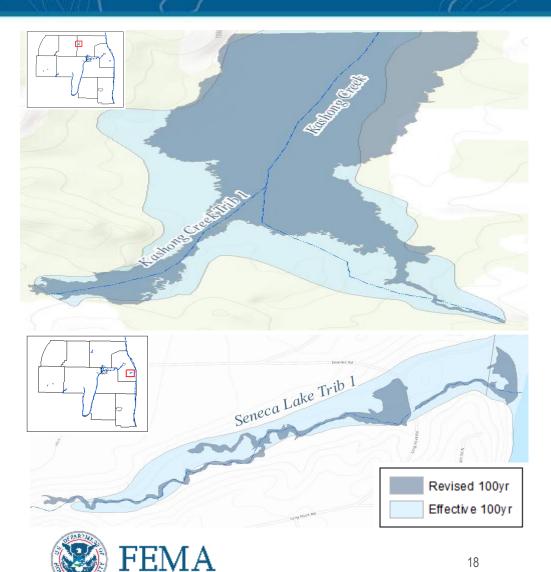
- Town of Benton
- ► Town of Italy
- Town of Jerusalem
- Town of Torrey
- Village of Dundee
- Village of Penn Yan

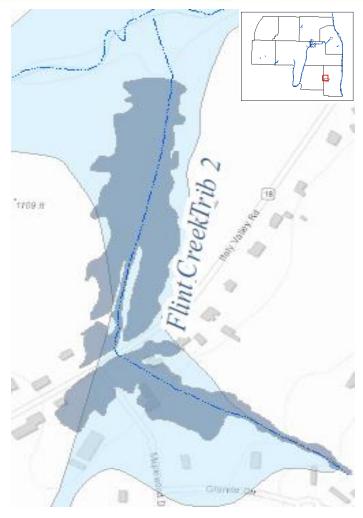
Studied in 2018


- Town of Barrington
- Town of Benton
- ► Town of Italy
- Town of Jerusalem
- Town of Middlesex
- ► Town of Milo
- Town of Potter
- Town of Starkey
- ► Town of Torrey
- Village of Dresden
- Village of Dundee
- Village of Rushville

Detailed Hydraulics

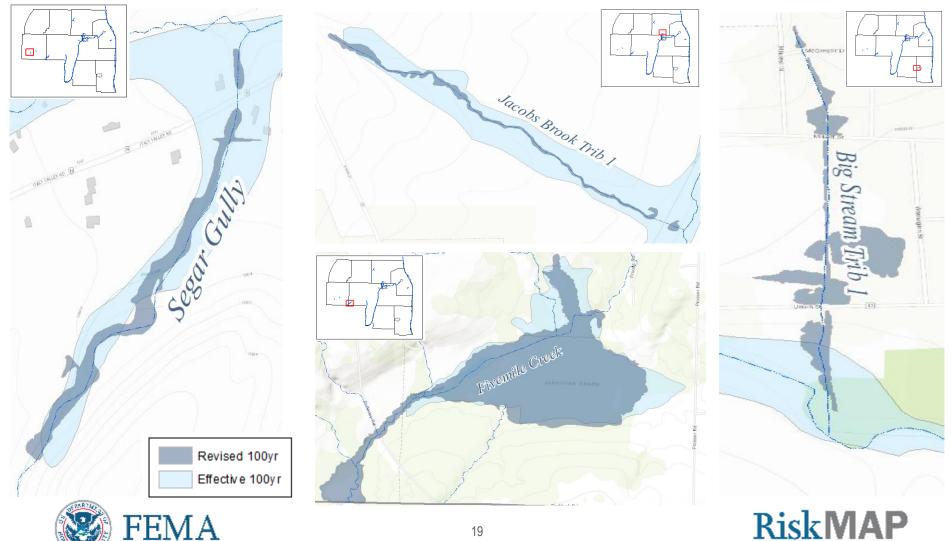
FEMA


Revised 100 yr Revised 100 yr - Shallow Flooding Effective 100 yr



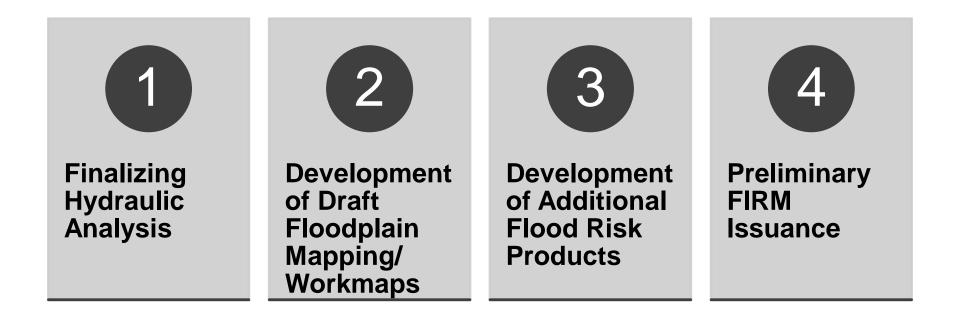
16

Approximate Hydraulics – Multiple Streams



Approximate Hydraulics – Multiple Streams

Increasing Resilience Together



What's Next? Path Forward

Next Steps

Overall Flood Risk Project Timeline

Touchpoint – In person

Contacts

FEMA

Project Monitor

- Shudipto Rahman
- 202-702-4273
- shudipto.rahman@fema.dhs.gov

Outreach Coordinator

- Stephanie Gootman
- 202-802-3137
- stephanie.gootman@fema.dhs.gov

STARR II (Technical Partner)

Project Manager

- Srikanth Koka
- 703-849-0584
- skoka@dewberry.com

Regional Support Center Lead

- Curtis Smith
- 646-490-3929
- curtis.smith@stantec.com

Questions? Comments?

Thank you!

