

Flood Risk Project

Essex County, New York, Hydrology Meeting

April 28, 2021

Recap/Refresh

Hydrology Analysis Review

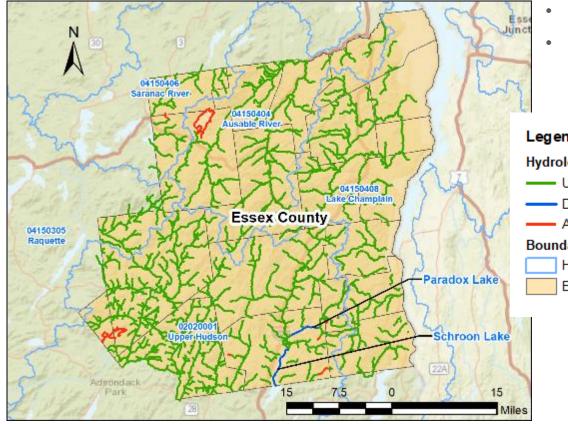
Path Forward

Project Recap

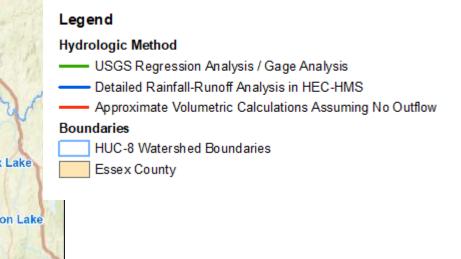
Two Discovery Meetings

- June 2016 for Lake Champlain watershed
- July 2018 for Upper Hudson watershed, Ausable River watershed, and Saranac River watershed

This Study


- Kickoff meeting: Held online due to COVID19 May 6, 2020
- Engineering models notification to communities: August 14, 2020
- Field survey: Spring 2020 April 2021
- Hydrologic analysis: April 2020 Present

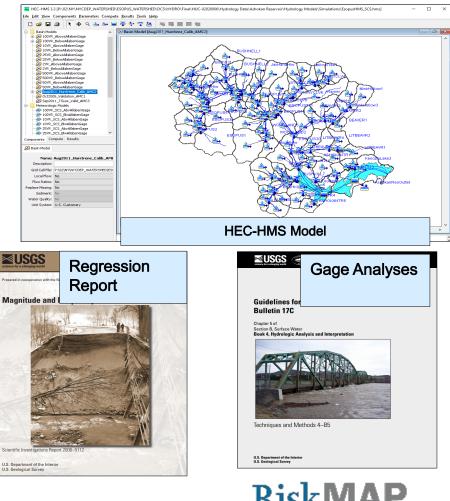
Project Scope


FEMA

First time digital countywide maps

Location and Study Streams

- 1,340 miles of regression analysis
- 10 miles of rainfall-runoff modeling
- 31 miles of volumetric calculations



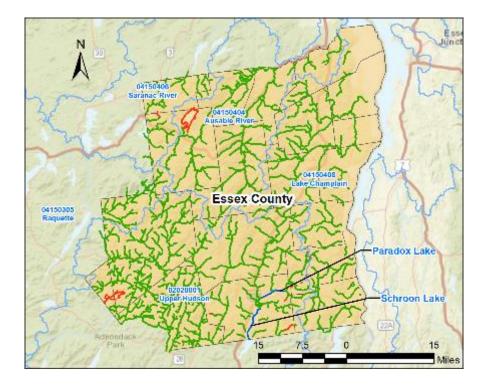
Hydrologic Analysis Methods

- Develop inputs for hydraulic analysis
- Discharges developed
 - 10%, 4%, 2%, 1% (Base Flood), 0.2%
 - 1%+ and 1%-

Typical FEMA methods

- Regression analyses
 - Regional equations published by USGS
 - USGS StreamStats web application
- Statistical gage analyses
 - Statistical analyses of flow/stage gage data
 - HEC-SSP Program
- Rainfall runoff analyses
 - Physical modeling
 - USACE HEC-HMS program

Increasing Resilience Together


Regression Analysis

- USGS StreamStats Database
- Relationships between peak flows and watershed characteristics

Hydrology – Regression Analysis

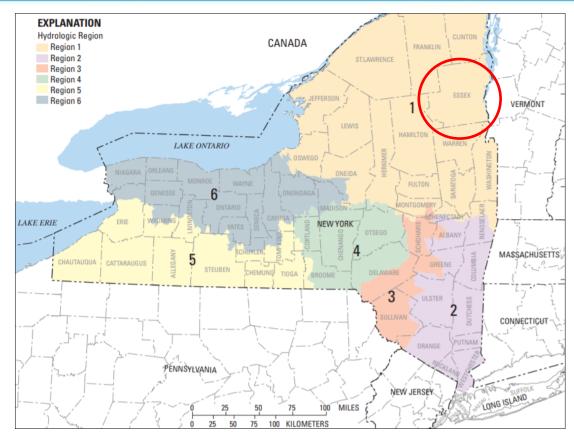
Regression Analysis = Green (1,340 miles)

Legend

Hydrologic Method

- USGS Regression Analysis / Gage Analysis
- ---- Detailed Rainfall-Runoff Analysis in HEC-HMS
- Approximate Volumetric Calculations Assuming No Outflow

Boundaries


- HUC-8 Watershed Boundaries
- Essex County

Regional Regression Equations and Analysis

- USGS New York regression equation: SIR 2006-5112
- Study area falls within USGS NY regression Region 1
- USGS StreamStats v 4.3.8 web application employed
- Primary method for Zone
 A and AE streams

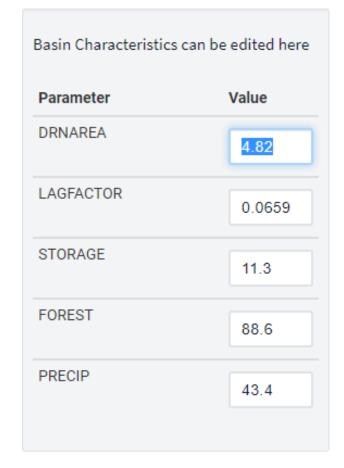
Summary of Regression Equations

USGS NYS Hydrologic Region 1

$$\begin{aligned} Q_{10} &= 2310 \ (A)^{0.968} \ (ST+1)^{-0.184} \ (P)^{1.241} \ (LAG+1)^{-0.482} \ (FOR+80)^{-1.549} \\ Q_{25} &= 4580 \ (A)^{0.965} \ (ST+1)^{-0.192} \ (P)^{1.167} \ (LAG+1)^{-0.500} \ (FOR+80)^{-1.582} \\ Q_{50} &= 7030 \ (A)^{0.963} \ (ST+1)^{-0.197} \ (P)^{1.131} \ (LAG+1)^{-0.511} \ (FOR+80)^{-1.610} \\ Q_{100} &= 10300 \ (A)^{0.962} \ (ST+1)^{-0.202} \ (P)^{1.106} \ (LAG+1)^{-0.520} \ (FOR+80)^{-1.638} \\ Q_{500} &= 22000 \ (A)^{0.959} \ (ST+1)^{-0.210} \ (P)^{1.067} \ (LAG+1)^{-0.539} \ (FOR+80)^{-1.704} \end{aligned}$$

where,

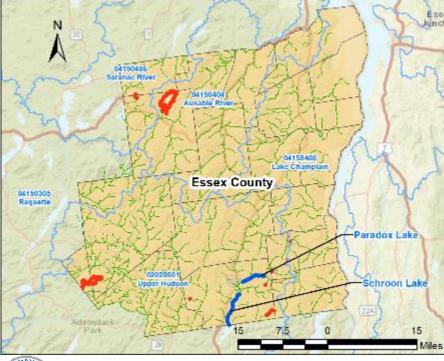
- **Q**_x = peak flow for x-year storm event (cubic feet per second)
- A = drainage area (square miles)
- **ST** = storage, the percent of drainage area that is comprised of lakes, ponds, reservoirs and wetland (%)
- **P** = precipitation, the mean annual precipitation (in)

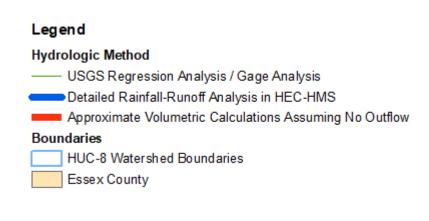

LAG = lag Factor, the main channel length divided by the square root of the product of the upper half slope of the main channel (plus one) and the lower half slope of the main channel (plus one) (dimensionless) **FOR** = forest, the percentage of the drainage area covered by forest (%)

Manual Basin Adjustments

- Reviewed StreamStats basin delineations against project DEM
- Adjusted basin boundaries as necessary within GIS
- StreamStats used to manually update drainage area parameter and re-compute flow results
 - Other parameters were assumed to be unchanged

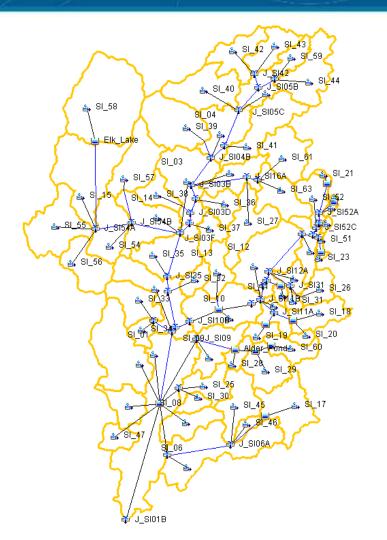
Rainfall-Runoff Analysis


Creation of hydrologic models to calculate lake elevations


- Various inputs required
- Typically used for detailed studies

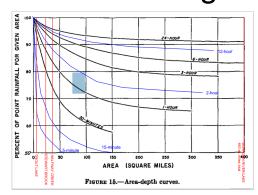
Hydrology – Rainfall-Runoff Modeling

- Rainfall-Runoff Analysis = Blue (10 miles)
- Volumetric Analysis = Red (included in models, 31 miles)



Rainfall-Runoff Methodology

- ► Software Program: HEC-HMS 4.5
- Rainfall: NOAA Atlas 14
 Precipitation Frequency Data Server, 50th percentile, 2nd quartile, 24-hour temporal distribution
- Loss Methodology: SCS Curve Number (TR-55), with average antecedent runoff condition
- Hydrograph Methodology: SCS Unit Hydrograph
 - Standard Peak Rate Factor (484)
 - Lag Time (60% of Time of Concentration)
- Channel Routing: Muskingum-Cunge using 8-point cross-sections



Rainfall-Runoff Modeling Rainfall Data

- NOAA Atlas 14 Rainfall Data
- Gridded Data Average
 Values

Rainfall Amounts for the Schroon Lake Basin					
Storm Frequency	Raw Values	With 0.91 ARF			
50% AEP	2.65	2.41			
10% AEP	3.80	3.46			
4% AEP	4.52	4.11			
2% AEP	5.06	4.61			
1% AEP	5.62	5.12			
0.2% AEP	7.08	6.44			

- Area Reduction Factors were applied (Figure 15, TP-40)
- ARF of 0.91 applied to the Schroon Lake model based on the 400 square mile combined drainage area

Rainfall-Runoff Modeling SCS Curve Numbers

- Soil Data from USGS SSURGO database
- Land use data from National Land Use Database (NLCD)
- Composite CN calculated for each sub-basin (TR-55 Methodology)

Runoff curve numbers for urban areas 1/

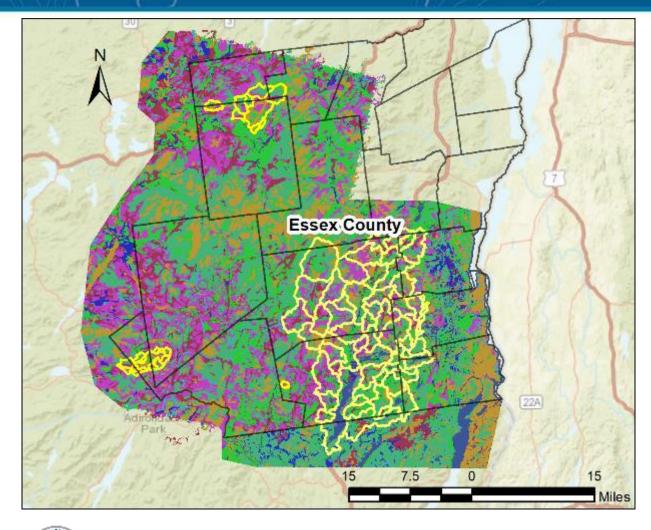
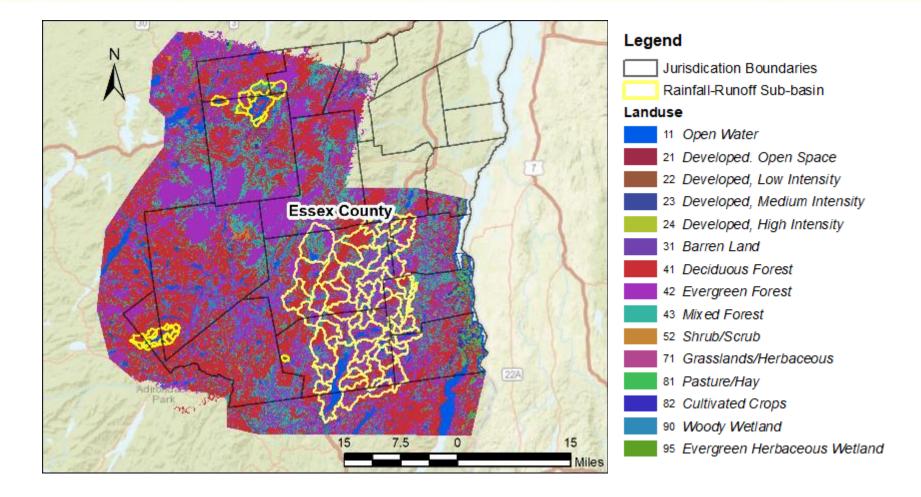

- Land use compared to recent aerial imagery to confirm
- Manual adjustments to land use made as necessary
- Calculated composite Curve Numbers range from 50-81

Table 2-2a


Cover description			Curve numbers for hydrologic soil group			
	Average percent					
Cover type and hydrologic condition	impervious area ⅔	Α	В	С	D	
Fully developed urban areas (vegetation establishe	ed)					
Open space (lawns, parks, golf courses, cemeteries,	etc.) ^{2/} :					
Poor condition (grass cover < 50%)			79	86	89	
Fair condition (grass cover 50% to 75%)			69	79	84	
Good condition (grass cover > 75%)			61	74	80	
Impervious areas:						
Paved parking lots, roofs, driveways, etc.						
(excluding right-of-way)			98	98	98	
Streets and roads:						
Paved; curbs and storm sewers (excluding						
right-of-way)		98	98	98	98	
Paved; open ditches (including right-of-way)			89	92	93	
Gravel (including right-of-way)			85	89	91	
Dirt (including right-of-way)			82	87	89	

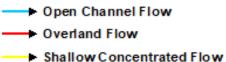
Rainfall-Runoff Modeling Hydrologic Soil Groups



Rainfall-Runoff Modeling

Rainfall-Runoff Modeling Time of Concentration (Tc) / Lag Time

- Longest flow path = longest time that a drop of water would take to travel through a watershed
- Developed from project DEM
- Flow paths split into different types:
 - Sheet flow maximum = 100 ft
 - Shallow concentrated flow: from end of sheet flow segment to visual open channel or 1,000 ft maximum
 - Channel flow: begins at end of shallow concentrated flow segment and ends at sub-basin outlet
 - Flow segments further subdivided at locations of representative slope
- Lag times = 60% of Time of Concentration



Longest Flow Path Example

Flow Regime

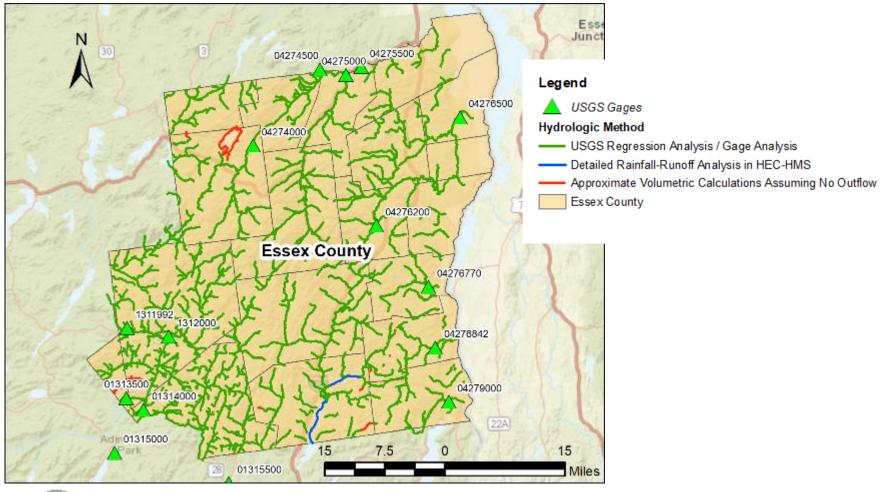
Gage Analysis

Statistically analyze measured flows at gages

Hydrology – Gage Analysis

 Gage analysis performed in support of rainfall-runoff model validation

- Viable gage = minimum 10 years current record
- Bulletin 17C methodology



USGS Gage No.	Description	Drainage Area (sq. mi)	Period of Record	Number of Records
01313500	Cedar River near Indian Lake, NY	160	1931-1969	36
01314000	Hudson River near Indian Lake, NY	419	1917-1968	52
01315000	Indian River near Indian Lake, NY	132	1913-2019	104
01315500	Hudson River at North Creek, NY	792	1908-2019	112
04274000	West Branch Ausable River near Lake Placid, NY	116	1920-2019	86
04274500	Black Brook at Black Brook, NY	49.4	1925-1961	37
04275000	East Branch Ausable River at AU Sable Forks, NY	198	1924-2019	95
04276200	Boquet River at New Russia, NY	37.6	1948-1979	31
04276770	Mill Brook at Port Henry, NY	27	1990-2000	11
04276842	Putnam Creek East of Crown Point Center, NY	51.6	1990-2019	27
04279000	La Chute at Ticonderoga, NY	234	1943-2019	37
01312000	Hudson River near Newcomb, NY	192	1926-2019	94
01311992	Arbutus Pond Outlet near Newcomb, NY	1.22	1990-2019	29
04276500	Boquet River at Willsboro, NY	270	1924-2019	80
04275500	Ausable River near Ausable Forks NY	446	1911-2019	88
01313500	Cedar River near Indian Lake, NY	160	1931-1969	36
01314000	Hudson River near Indian Lake, NY	419	1917-1968	52

Hydrology – Gage Analysis

Model Validation / Results

 Check computed flows against results that one would expect from nearby gages

Adjust certain model inputs as needed

Rainfall-Runoff Results were compared a two locations:

- **1. Schroon River upstream of confluence with Paradox Creek**
- 2. Paradox Creek upstream of Paradox Lake

Computed Discharge (cfs)						
Site	Effective 1%-Annual Chance	Regression 1%-Annual Chance	HEC-HMS 1%-Annual Chance	Rainfall- Runoff/Regression Difference (%)		
Schroon River Upstream of Confluence with Paradox Creek	6,625	7,980	10,413	30%		
Paradox Creek Upstream of Paradox Lake	1,415	2,150	2,196	2%		

- Adjust CN and lag time until model output is within range of expected regression output
- Peak flows for all computed 1%-AEP were reviewed and deemed to be valid

Results Comparison to Effective Flows

Final discharges for the hydraulics will be from the regression and gage analysis only

- New study found to be consistent with effective flows (between 20% lower and up to 20% higher)
- Rainfall-runoff models will be used for stillwater elevations only

- Regression and Rainfall-Runoff: refer to Hydrology Report for Results Tables
- Stillwater elevations from rainfall-runoff analyses:

Computed Stillwater Elevations (NAVD88)							
Site	10%-Annual Chance	4%-Annual Chance	2%-Annual Chance	1%-Annual Chance	0.2%-Annual Chance	1% Plus – Annual Chance	1% Minus – Annual Chance
Schroon Lake	808.2	808.7	809.2	809.7	811.2	811.7	810.7
Paradox Lake	817.5	818.0	818.4	818.8	820.1	820.5	819.7

Essex County Next Steps

Field Survey/Reconnaissance

Hydraulic analysis

- Hydraulic modeling/report/submittal
- Hydraulic analysis webinar
- Floodplain Mapping
- Flood Risk Review meeting
 - Comment period for communities

Project Timeline towards Preliminary Issuance

*Current timeline could be impacted by Flood Risk Review or Preliminary Map Comments

Graphic Above Not to Scale

Contacts

FEMA Project Monitor

Robert Schaefer 347-882-7989 <u>Robert.Schaefer@fema.dhs.gov</u>

FEMA Outreach Coordinator

Thomas Song 917-374-5475 <u>Thomas.song@fema.dhs.gov</u>

STARR II Regional Support Center Lead

Rosemary Bolich 646-490-3848 rosemary.bolich@stantec.com

NY State Department of Environmental Conservation

Regional Contact: Vince Spadaro Central Office Contact: Brad Wenskoski 518-402-8185 floodplain@dec.ny.gov

STARR II Project Manager

Carmen Burducea 240-581-3546 carmen.burducea@stantec.com

STARR II Project Engineer / Presenter

Bryan Close 240-542-3124 bryan.close@stantec.com

Questions? Comments?

Thank you!

