

Flood Risk Project

Wayne County, New York, Hydrology Meeting

April 22, 2021

Recap/Refresh

Hydrology Analysis Review

Path Forward

Project Recap

Two Discovery Meetings

- Irondequoit Ninemile Watershed November 12, 2013
- Seneca River Watershed May 13, 2014

This Study

- Kickoff meeting: Held online due to COVID19 May 7, 2020
- Engineering models notification to communities: August 14, 2020
- Field survey: Spring 2020 January 2021
- Hydrologic analysis: April 2020 Present

Project Scope

First time digital countywide maps

Location and Study Streams

- 167 miles of rainfall-runoff modeling
- 370 miles of regression analysis (includes additional scope)
- 0.7 miles of volumetric calculations

Legend

Method and Study Type

- ------ Detailed, Rainfall-Runoff analysis in HEC-HMS
- ---- Approximate, Rainfall-Runoff analysis in HEC-HMS
- ---- Approximate, USGS Regression Analysis / Gage Analyses
 - Approximate, Volumetric calculations assuming no outflow

Boundaries

- Wayne County
 - HUC-8 Watershed Boundary

Post-Kickoff Scoped Streams Regression Analysis

Village of Newark

- Military Run (2.7 miles)
- Trout Run (3.3 miles)

Hydrologic Analysis Methods

- Develop inputs for hydraulic analysis
- Discharges developed
 - 10%, 4%, 2%, 1% (Base Flood), 0.2%
 - 1%+ and 1%-

Typical FEMA methods

- Regression analyses
 - Regional equations published by USGS
 - USGS StreamStats web application
- Statistical gage analyses
 - Statistical analyses of flow/stage gage data
 - HEC-SSP Program
- Rainfall runoff analyses
 - Physical modeling
 - USACE HEC-HMS program

Increasing Resilience Together

Regression Analysis

- USGS StreamStats Database
- Relationships between peak flows and watershed characteristics

Hydrology – Regression Analysis

Regression Analysis = Green (370 miles)

FEMA

Regional Regression Equations and Analysis

- USGS New York regression equation: SIR 2006-5112
- Study area falls within USGS NY regression Region 6
- USGS StreamStats v 4.3.8 web application employed
- Primary method for Zone A streams

Summary of Regression Equations

USGS NYS Hydrologic Region 6

 $Q_2 = 8.98 A^{0.807} (ST + 0.5)^{-0.258} (RUNF)^{0.740} (EL12 + 1)^{0.093} (SR)^{0.209}$

 $Q_{10} = 23.4A^{0.810}(ST + 0.5)^{-0.218}(RUNF)^{0.600}(EL12 + 1)^{0.133}(SR)^{0.268}$

 $Q_{25} = 32.1A^{0.815}(ST + 0.5)^{-0.200}(RUNF)^{0.555}(EL12 + 1)^{0.148}(SR)^{0.290}$

 $Q_{50} = 39.0A^{0.819}(ST + 0.5)^{-0.188}(RUNF)^{0.528}(EL12 + 1)^{0.157}(SR)^{0.305}$

 $Q_{100} = 46.0A^{0.823}(ST + 0.5)^{-0.177}(RUNF)^{0.505}(EL12 + 1)^{0.166}(SR)^{0.318}$

 $Q_{500} = 62.7 A^{0.834} (ST + 0.5)^{-0.155} (RUNF)^{0.466} (EL12 + 1)^{0.183} (SR)^{0.345}$

where,

 Q_x = peak flow for x-year storm event (cubic feet per second)

A = drainage area (square miles)

ST = basin storage (percentage of total drainage area)

RUNF = mean annual runoff (inches)

EL12 = percentage of drainage basin at or greater than 1,200 feet above sea level

SR = ratio of main-channel slope to basin slope within the drainage basin

Manual Basin Adjustments

- Reviewed StreamStats basin delineations against project DEM
- Adjusted basin boundaries as necessary within GIS
- StreamStats used to manually update drainage area parameter and re-compute flow results
 - Other parameters were assumed to be unchanged

Urban Adjustment Factor Equations

- Base regression equations not applicable to urban areas
- Peak flows adjusted for basins with >15% urban land use (from NLCD layer)
- Affected reaches: Dennison Creek, Dennison Creek Tributary 1, Fourmile Creek Tributary 2, Ontario Tributary 2, Red Creek (Walworth), Salmon Creek (Sodus) Tributary 3, Second Creek Tributary 1, Trout Run Tributary 1, Wolcott Creek Tributary 4, Wolcott Creek Tributary 5

where,

UQx = urban-adjusted peak flow for x-year storm event (cubic feet per second)

A = drainage area (square miles)

BDF = basin development factor, calculated using the methods described in Sauer and Others (Sauer, 1983) RQx = regression peak flow for x-year storm event (cubic

feet per second)

11

Urban Adjustment Factor Basins

Rainfall-Runoff Analysis

- Creation of hydrologic models to calculate flows
- Various inputs required
- Typically used for detailed studies

Hydrology – Rainfall-Runoff Modeling

- Rainfall-Runoff Analysis = Blue and Purple (167 miles)
- Volumetric Analysis = Red (included in models, 0.7 miles)

Increasing Resilience Together

Rainfall-Runoff Methodology

- Software Program: HEC-HMS 4.5
- Rainfall: NOAA Atlas 14
 Precipitation Frequency Data
 Server, 50th percentile, 2nd quartile, 24-hour temporal distribution
- Loss Methodology: SCS Curve Number (TR-55), with average antecedent runoff condition
- Hydrograph Methodology: SCS Unit Hydrograph
 - Standard Peak Rate Factor (484)
 - Lag Time (60% of Time of Concentration)

FEMA

 Channel Routing: Muskingum-Cunge using 8-point cross-sections

Rainfall-Runoff Modeling Rainfall Data

NOAA Atlas 14 Rainfall Data

Area Reduction Factors were applied (TP-60)

2-7

Point Rainfall Amounts at Select Monitoring Stations				
Storm Frequency	Sodus Creek	Newark		
50% AEP	2.30	2.18		
10% AEP	3.33	3.17		
4% AEP	3.97	3.79		
2% AEP	4.46	4.26		
1% AEP	4.96	4.74		
0.2% AEP	6.31	6.06		

TABLE 2-3

PRINCIPAL SPILLWAY VOLUME ADJUSTMENTS

A. Minimum Areal Adjustment Ratios for Precipitation

Area	Area/Point Ratio for:		Area	Area/Point Ratio for:		
Sq. Mi.	1 Day	10 Days	Sq. Mi.	l Day	10 Days	
10. or less	1.000	1.000	45.	0.951	0.976	
15.	0.977	0.991	50.	0.948	0.974	
20.	0.969	0.987	60.	0.944	0.972	
25.	0.965	0.983	70.	0.940	0.970	
30.	0.961	0.981	80.	0.937	0.969	
35.	0.957	0.979	90.	0.935	0.967	
40.	0.954	0.977	100.	0.932	0.966	

Rainfall-Runoff Modeling SCS Curve Numbers

- Soil Data from USGS SSURGO database
- Land use data from National Land Use Database (NLCD)
- Composite CN calculated for each sub-basin (TR-55 Methodology)

Runoff curve numbers for urban areas 1/

- Land use compared to recent aerial imagery to confirm
- Manual adjustments to land use made as necessary
- Calculated composite Curve Numbers range from 50-81

Table 2-2a

Cover description			Curve numbers for hydrologic soil group			
	Average percent					
Cover type and hydrologic condition	impervious area ¥	Α	В	С	D	
Fully developed urban areas (vegetation establishe	d)					
Open space (lawns, parks, golf courses, cemeteries,	etc.) ¾:					
Poor condition (grass cover < 50%)			79	86	89	
Fair condition (grass cover 50% to 75%)			69	79	84	
Good condition (grass cover $> 75\%$)			61	74	80	
Impervious areas:						
Paved parking lots, roofs, driveways, etc.						
(excluding right-of-way)			98	98	98	
Streets and roads:						
Paved; curbs and storm sewers (excluding						
right-of-way)			98	98	98	
Payed: open ditches (including right-of-way)			89	92	93	
Gravel (including right-of-way)			85	89	91	
Dirt (including right-of-way)			82	87	89	

Rainfall-Runoff Modeling Hydrologic Soil Groups

Hydrologic Soil Group

Rainfall-Runoff Modeling

Land Use

Open Water Developed, Open Space Developed, Low Intensity Developed, Medium Intensity Developed, High Intensity Barren Land Deciduous Forest Evergreen Forest Mixed Forest Shurb / Scrub Grassland / Herbaceous Pasture / Hay Cultivated Crops Woody Wetlands Emergent Herbaceous Wetlands

Rainfall-Runoff Modeling Time of Concentration (Tc) / Lag Time

- Longest flow path = longest time that a drop of water would take to travel through a watershed
- Developed from project DEM
- Flow paths split into different types:
 - Sheet flow maximum = 100 ft
 - Shallow concentrated flow: from end of sheet flow segment to visual open channel or 1,000 ft maximum
 - Channel flow: begins at end of shallow concentrated flow segment and ends at sub-basin outlet
 - Flow segments further subdivided at locations of representative slope
- Lag times = 60% of Time of Concentration

Longest Flow Path Example

Erie Canal – Flow Diversions

- Complex system with various flow diversions
- Hydrology assumes 100% of flow follows a single path
- Will be further refined during hydraulic analysis

Gage Analysis

• Statistically analyze measured flows at gages

Hydrology – Gage Analysis

Gage analysis performed in support of rainfall-runoff model validation

- Viable gage = minimum 10 years current record
- Bulletin 17C methodology

нем а

USGS Gage No.	Description	Drainage Area (sq. mi)	Period of Record	Number of Records
04235000	Canandaigua Outlet at Chapin, NY ¹	195	1940-2019	80
04235250	Flint Creek at Phelps, NY	102	1960-2018	53
04234200	Mud Creek at East Victor, NY	64.2	1958-2019	57
04219000	Erie (Barge) Canal at Lock 30 at Macedon, NY ¹	-	1951-2019	69
042320578	Bear Creek at Ontario, NY	6.74	1971-2019	48
04234138	Schaeffer Creek near Canandaigua, NY	7.84	1979-2019	41
04235255	Canandaigua Outlet Tributary near Alloway, NY	2.94	1977-2018	42
04235600	Seneca River (Erie Canal) near Port Byron, NY ¹	2815	1996-2018	23

Hydrology – Gage Analysis

Model Validation / Results

- Check computed flows against results that one would expect from nearby gages
- Adjust certain model inputs as needed

Rainfall-Runoff Modeling Model Validation

- 1. Compare drainage areas
 - Drainage area of modeled location between 0.5 and 1.5 times that of gage
- 2. Estimate results that one would expect from gage using Drainage Area Ratio Method (USGS, 2008)
- 3. Adjust CN and lag time until model output is within 20% of expected gage output
 - Adjustments within reasonable ranges of TR-55 tables check imagery
- 4. At locations where no suitable gage comparison exists, make same average CN and lag time adjustments from nearby model locations
- 5. Peak flows for all computed 1%-AEP were reviewed and deemed to be valid

Rainfall-Runoff Modeling Model Validation

 Calibrated Model -Original Model Volumetric Flow (cfs)

Hydrograph Comparison: Original Model vs Calibrated Model

Time (hr)

Rainfall-Runoff Modeling Comparison to Effective Flows

- New study found to be inconsistent with effective flows
 - Attributed to a difference in methodology and outdated data sources
- On average, updated flows 28% lower than effective

FEMA

- Regression and Rainfall-Runoff: refer to Hydrology Report for results tables
- Stillwater elevations from volumetric analyses:

Computed Stillwater Elevations (NAVD88)								
Site	10%-Annual Chance	4%-Annual Chance	2%-Annual Chance	1%-Annual Chance	0.2%-Annual Chance	1% Plus – Annual Chance	1% Minus – Annual Chance	
Wolcott Creek (Downstream Lake)	244.4	244.5	244.6	244.7	245.3	244.8	244.6	
Wolcott Creek (Upstream Lake)	346.1	346.3	346.5	346.6	347.2	346.8	346.5	
Unnamed Lake 1	472.0	472.1	472.1	472.1	472.1	472.2	472.0	
Unnamed Lake 2	457.7	457.7	457.7	457.7	457.7	457.7	457.7	
Unnamed Lake 3	468.0	468.1	468.1	468.1	468.2	468.2	468.2	
Unnamed Lake 4	457.2	457.2	457.2	457.2	457.2	457.2	457.2	

Wayne County Next Steps

Field reconnaissance

Hydraulic analysis

- Hydraulic modeling/report/submittal
- Hydraulic analysis webinar
- Floodplain Mapping
- Flood Risk Review meeting
 - Comment period for communities

Project Timeline towards Preliminary Issuance

*Current timeline could be impacted by Flood Risk Review or Preliminary Map Comments

Graphic Above Not to Scale

Contacts

FEMA Project Monitor

- Shudipto Rahman
- 202-702-4273
- shudipto.rahman@fema.dhs.gov

FEMA Outreach Coordinator

- Stephanie Gootman
- 202-802-3137
- stephanie.gootman@fema.dhs.gov

STARR II Project Manager

- Inger Sarappo
- 615-812-3597
- inger.sarappo@stantec.com

STARR II Regional Support Center

- Rosemary Bolich
- 646-490-3848
- rosemary.bolich@stantec.com

STARR II Presenter

- Rachael Mullaney
- 614-643-4406
- rachael.mullaney@stantec.com

Questions? Comments?

Thank you!

