

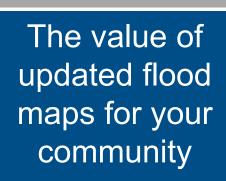
Flood Risk Project

Rensselaer County, NY Project Kick Off Meeting

May 4, 2020

Please Introduce Yourself

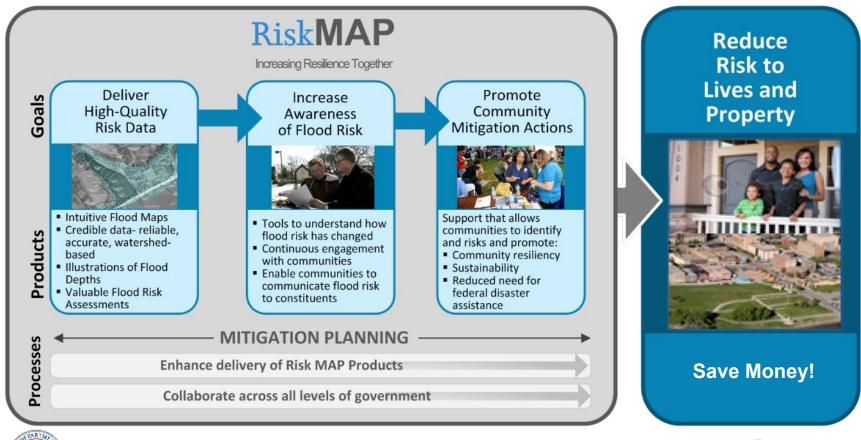
- Name
- ► Role
- Organization


Also, what do Rensselaer communities aspire to accomplish using today's meeting? As partners with FEMA, it's important we create dialogue about your needs for flood risk information.

Today's Goals

Recap of Flood Risk Study history, including Discovery and Hudson-Hoosic Watershed study

Review countywide study scope, products and outreach process



FEMA Mitigation Division

Risk Analysis Branch

FEMA

Goal: Stronger and Safer Communities

The Value of Updated Flood Maps for Local Communities

Flood Maps Guide Progress By:

ഹ

Identifying and Assessing Flood Risk Establishing Flood Insurance Rates

Determining Local Land Use

Informing Engineers and Developers Equipping Emergency Managers

Why we are here

We want to help communities understand flood risk and take action to reduce it because...

Risk changes	 All floods are different. Nature
over time	and communities change.

Flooding	 Communities may face flooding.
	Is your community active or
happens	reactive to flood risk?.

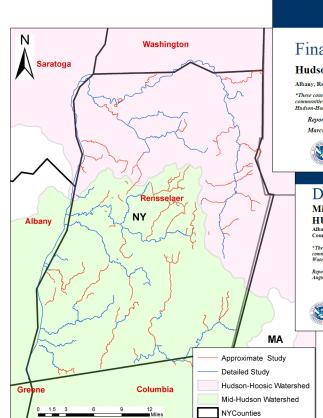
Mitigation is Possible

 Proactive communities plan to reduce flood impacts and other hazards.

Why Update Flood Maps?

The Federal Emergency Management Agency (FEMA) manages the National Flood Insurance Program (NFIP)

NFIP Policies for Rensselaer	NFIP Claims for affected communities	FEMA Insurance Claims Paid in affected communities	Hazard Mitigation Plan
914	528	\$7,200,318	October 2019


How did we get here? Review past activities

Discovery/Post-Discovery Progress *Recap*

- Two separate HUC8 watershed level efforts
- Hudson-Hoosic
 Watershed
 - Meetings October 2012
 - Completion March 2014
- Mid-Hudson Watershed
 - Meetings October 2016
 - Completion April 2017
- Community input guided FEMA priorities

Final Discovery Report

Hudson-Hoosic Watershed, HUC 02020003

Albany, Rensselaer, Saratoga, Warren, and Washington Counties, New York' *These counties span more than one watershed; please see following page for a list of communities fully or partially located in the watershed. This report covers only the Hudson-Hoost watershed in State of New York.

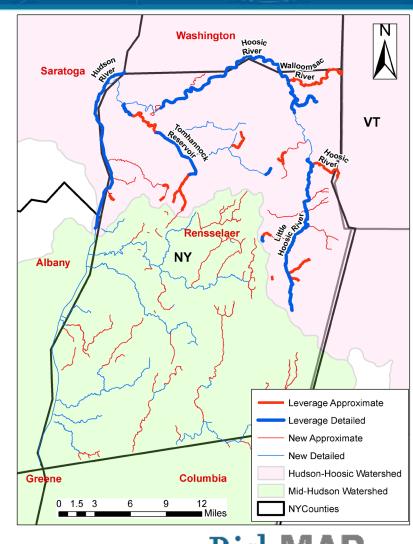
Report Number 01 March 31, 2014

Discovery Report Mid-Hudson Watershed

HUC 02020006

Albany, Columbia, Dutchess, Greene, Rensselaer, Schenectady, Schoharie, and Ulster Counties, New York*

*These counties span more than one watershed; please see the following page for a list of communities fully or partially located in the watershed. This report covers only the Mid-Hudson Watershed in the State of New York.

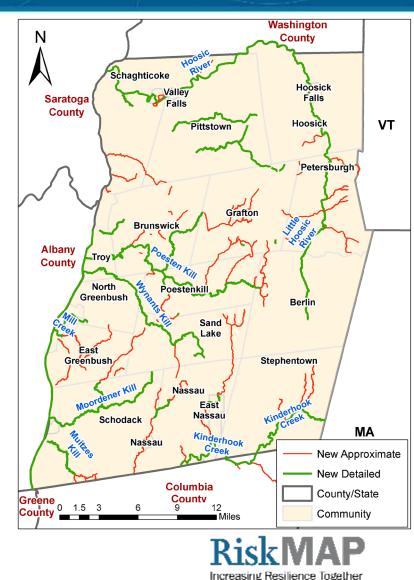

Report Number 01 August 2017

Federal Emergency Management Agency Department of Homeland Security 26 FEEMA New York, NY

Leveraged Data Recap

- Hudson-Hoosic Watershed Study
 - Initial flood hazard analyses completed 2016
 - Additional analyses completed in 2018
 - Hudson River above Troy Dam 15 miles
 - Walloomsac River 7.3 miles
- 2016 Partial Countywide Study
 - Hoosic River 20 miles (model updated)
 - Woods Brook 3.1 miles
 - Tomhannock Creek/Reservoir 14.3 miles
 - Tribs to Little Hoosic River 5.4 miles
 - Other Tribs 9 miles
- 2019 Hoosick Falls Levee Discovery Study
- Any local flood studies that FEMA should be aware off?

Increasing Resilience Together

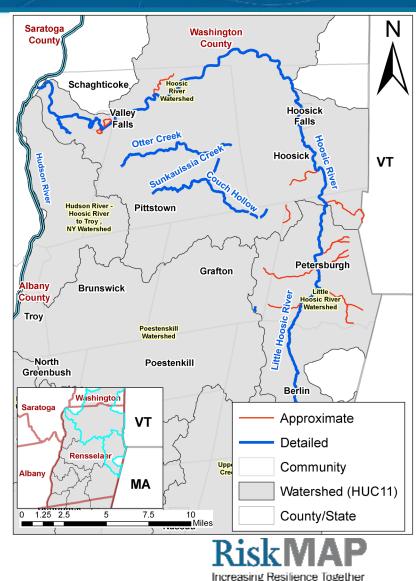


What is being studied now? Discuss scope of new study

Rensselaer County, Countywide Flood Risk Study Scope

- First time digital maps
- Additional flooding sources analyzed
 - Detailed riverine studies (AE Zone) 21 streams, 198 miles
 - Detailed lake studies (AE) 8 lakes, 5 miles
 - Approximate (A Zone) studies multiple streams, 170 miles
 - Redelineation (AE) 1 stream, 6 miles
- 22 updated communities
- Review meetings
 - Hydrology Meeting
 - Hydraulics Meeting
 - Flood Risk Review Meeting

Scope: Hoosic River/Little Hoosic River Watershed


6 Detailed (AE) Study Streams – 56 miles

- Hoosic River 34.3 miles*
- Little Hoosic River 16.2 miles
- Otter Creek 8.5 miles
- Sunkauissia Creek 6.7 miles
- Couch Hollow 4.1 miles
- Tomhannock Creek 1.7 miles
- Babcock Lake 0.7 miles
- Taconic Lake 0.3 miles

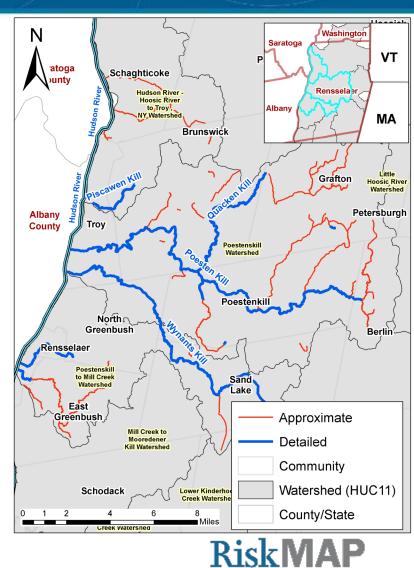
10 Approximate (A) Study Streams – 30 Miles

*Leverage 2016 study, updated engineering

In the legend, HUC 11 refer to 11-digit watershed boundaries from Cornell University Geospatial Information Repository (CUGIR)

Scope: Poesten Kill/Piscawen Kill/Mill Creek Watershed

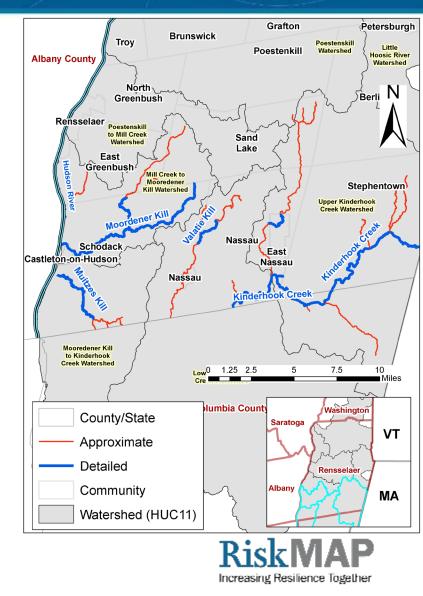
7 Detailed (AE) Study Streams – 49 miles


- Piscawen Kill 3.2 miles
- Newfoundland Creek 1.1 miles
- Poesten Kill 23.4 miles
- Quacken Kill 8.3 miles
- Wynants Kill 18.3 miles
- Mill Creek 1.2 miles
- Quackenderry Creek 3.7 miles

• 4 Detailed (AE) Study Lakes – 2 miles

- Crooked Lake 1.1 miles
- Forest Lake 0.3 miles
- Ida Lake 0.4 miles
- Vosburg Pond 0.2 miles

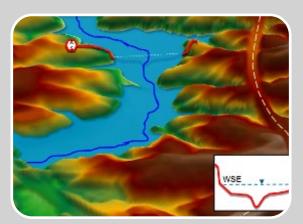
13 Approximate (A) Streams – 79 Miles



Increasing Resilience Together

Scope: Kinderhook/Moordener Watershed & Hudson River

▶ 7 Detailed (AE) Study Streams – 48 miles


- Kinderhook Creek 5.8 miles
- Valatie Kill 2.5 miles
- Moordener Kill 14 miles
- North Branch Moordener Kill 3.2 miles
- Muitzes Kill 5.6 miles
- Black Brook 0.5 miles
- Kinderhook Creek 14.3 miles
- Tsatsawassa Creek 1.9 miles
- Detailed (AE) Study for Hudson River (Below Troy Dam) – 21.2 miles
- 13 Approximate (A) Streams 62 Miles

Flood Hazard Analyses

Hydrology

Volume of water? Peak Flows?

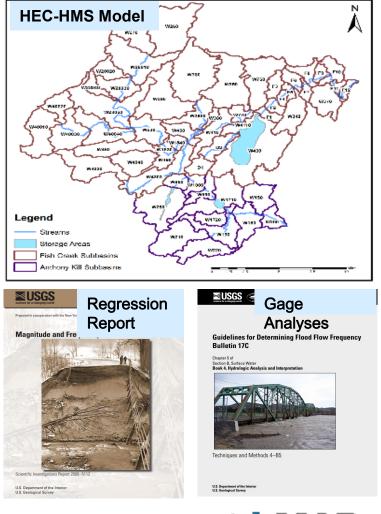
When will storm water or runoff make it to the stream?

Hydraulics

Will the stream in question be able to convey all storm water or runoff that arrives?

Floodplain Mapping

What areas of a community will be inundated based on engineering analysis?


Engineering Methods - Hydrologic Analysis

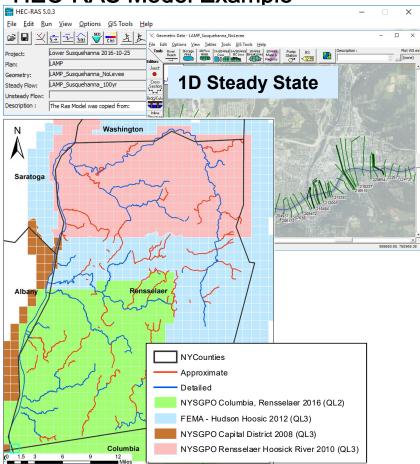
Typical Methods FEMA utilizes

- Regression Analyses
- Statistical Gage Analyses
- Rainfall Runoff Modeling

Gage/Regression are based on availability of stream gage data

- Most study streams use regression only
- Limited Gage Data (4 USGS gages)
- Rainfall-Runoff physical modeling chosen due to limited gage data
 - Limited use for lakes and some streams
- Discharges developed for
 - **10%**, 4%, 2%, 1%, 1%+, 1%-, 0.2%
 - Inputs for hydraulic analyses

Engineering Methods - Hydraulic Analysis

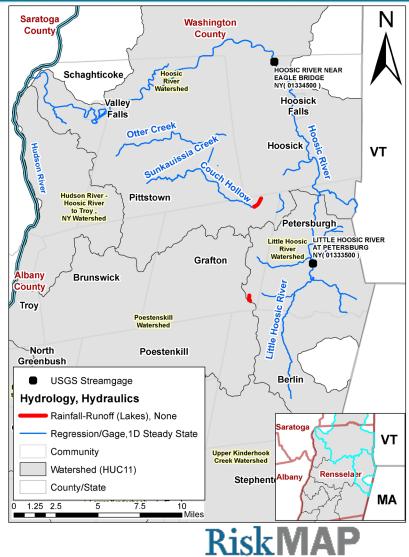

Types of Analyses

- One Dimensional (1D) Steady State
- Two Dimensional (2D) Unsteady State
- Modeling developed using USACE's HEC-RAS Program
- Ferrain Data Multiple Sources
 - Provides topographic elevation information
 - Supplemented by field survey

Field Survey for Detailed Study

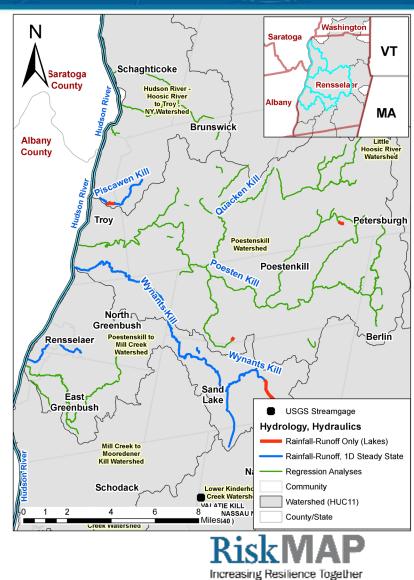
- Collection underway: 245 structures and 1100+ under water channel sections
- Flood Hazard Data Generated
 - Elevations: 10%, 4%, 2%, 1%, 1%+, 1%-, 0.2%
 - Floodplain extents: 10%, 1%, 0.2%, Floodway

HEC-RAS Model Example



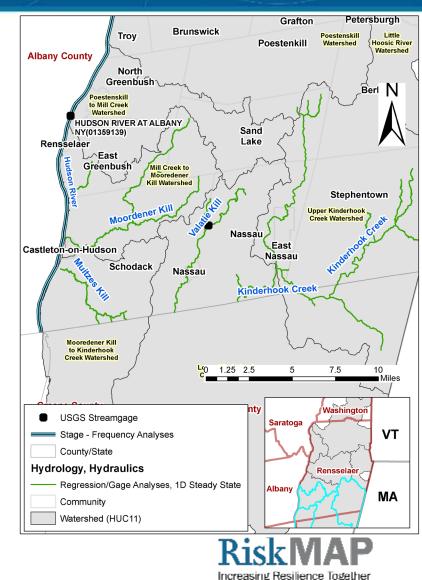
Engineering Methods - Hoosic River/Little Hoosic River Watershed

- Hydrologic Method: USGS Regression Analyses Only
 - All study reaches
- Hydrologic Method: USGS Regression Analyses/Gage Analyses
 - Hoosic River
 - Little Hoosic River
- Hydrologic Method: Rainfall-Runoff Analyses
 - Babcock Lake
 - Taconic Lake
- Hydraulic Method: HEC-RAS, 1D steady state hydraulic model
 - All study stream reaches
 - Hoosic River Update 2016 Analyses

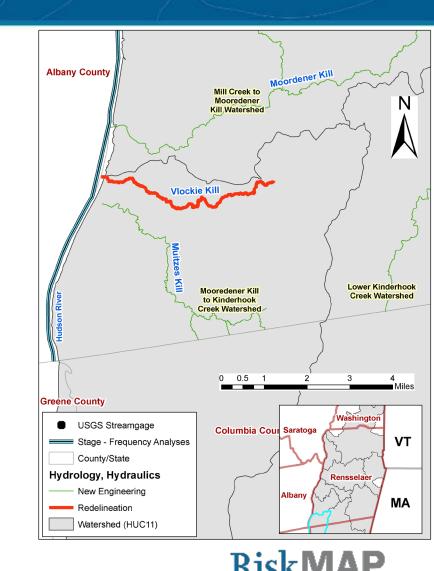

Engineering Methods - Poesten Kill/Piscawen Kill/Mill Creek Watershed

20

- Hydrologic Method: USGS Regression Analyses
 - Newfoundland Creek
 - Poesten Kill
 - Quacken Kill
 - Mill Creek
 - All approximate study reaches
- Hydrologic Method: Rainfall-Runoff Analyses
 - Piscawen Kill
 - Wynants Kill
 - Quackenderry Creek
 - All Lakes
- Hydraulic Method: HEC-RAS, 1D steady state hydraulic model
 - All study stream reaches

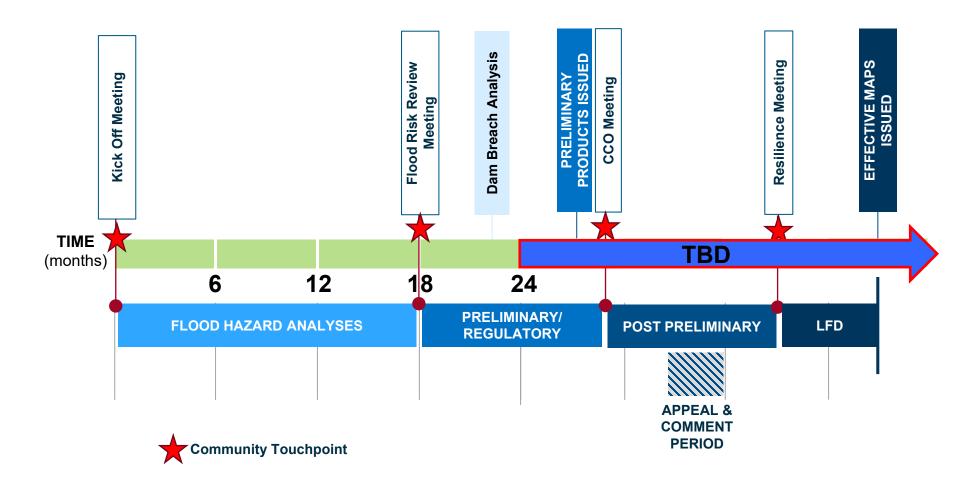


Engineering Methods - Kinderhook/Moordener Watershed & Hudson River


- Hydrologic Method: USGS Regression Analyses Only
 - All study reaches
- Hydrologic Method: USGS Regression Analyses/Gage Analyses
 - Valatie Kill
- Hydrologic Method: Stage-Frequency Analyses
 - Hudson River
- Hydraulic Method: HEC-RAS, 1D steady state hydraulic model
 - All study stream reaches

Redelineated Streams

- Vlockie Kill 6.2 miles
- No hydrology or hydraulic analyses conducted
- Flood extents are re-delineated using latest LiDAR topographic data
- Vertical Datum Conversion conducted
- Existing flood elevations converted from NGVD29 to NAVD88 datum



Where are we now and what is next? Discuss next steps

Overall Flood Risk Project Timeline

Major Study Milestones

- Data Development (October 2021)
 - Terrain processing
 - Engineering Methods Concurrence (620 letters)
 - Field reconnaissance and survey
 - Hydrologic modeling
 - Hydraulic modeling
 - Floodplain mapping (workmaps)

- Flood Risk Review Meeting (December 2021)
 - Review work map products with communities

What will communities receive?

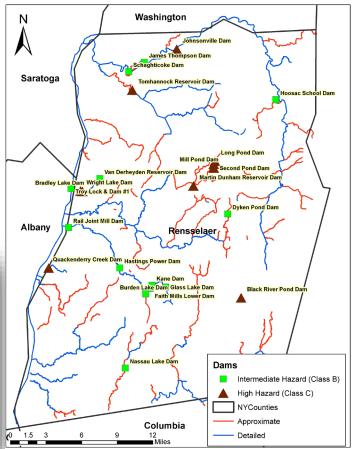
Work Maps

- Draft floodplain mapping shared using work maps
- Flood Risk Review meeting provides a review of the new engineering analysis results, allowing communities to:
 - Identify potential updates for Hazard Mitigation Plans
 - Provide insight and input on hydrology and hydraulic results in updated study area
 - Seek local buy-in and review possible use of analysis
 - Identify areas of large changes and potential opportunities for risk reduction
 - Identify risk communications needs and options

Knowing the Risk

If a community does not know or understand their risk, they may struggle to....

- effectively plan use of resources for natural hazards and potential disasters;
- implement effective hazard mitigation projects;
- effectively regulate current and future development without increasing risk; and/or
- effectively communicate about natural hazards to its residents about personal and community mitigation projects that can reduce long-term risk.


Dam Breach Analysis

- Up to 5 Medium/High Hazard Dams analyzed
 - 13 Intermediate hazard class (B)
 - ▶ 10 High hazard class (C)
- Engineering analyses developed for FIRM will be leveraged
- EAP analyses could be leveraged
 - 16 out of 23 (Class B and C)
- Flood Inundation Maps will be developed

Contacts

FEMA Project Monitor

Robert Schaefer 347-882-7989 Robert.Schaefer@fema.dhs.gov

FEMA Outreach Coordinator

Stephanie Gootman 202-802-3137 stephanie.gootman@fema.dhs.gov

STARR II Project Manager

Srikanth Koka, PE 703-849-0584 skoka@dewberry.com

STARR II Regional Support Center Lead

Curtis Smith 646-490-3929 curtis.smith@stantec.com

Questions? Comments?

Thank you!

