


# Flood Risk Project

Saratoga County, NY Project Kick Off Meeting

May 6, 2020





#### **Please Introduce Yourself**



- Name
- ► Role
- Organization

Also, what do Saratoga communities aspire to accomplish using today's meeting? As partners with FEMA, it's important we create dialogue about your needs for flood risk information.







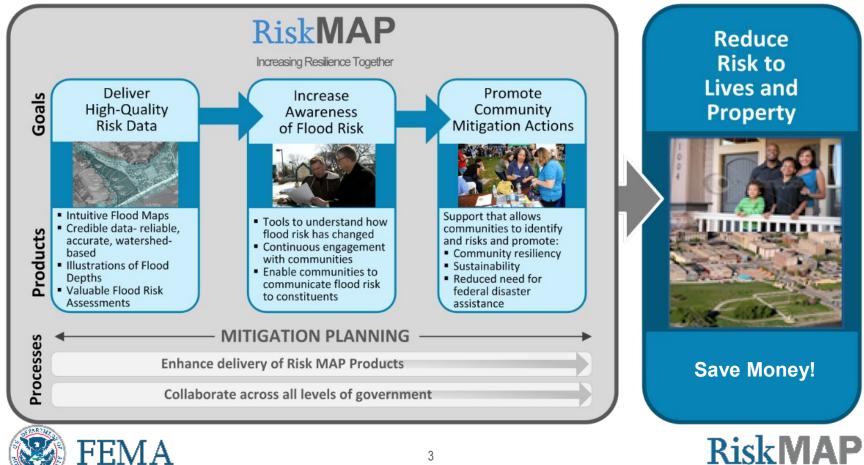
#### **Today's Goals**



The value of updated flood maps for your community Recap of Flood Risk Study history, including Discovery and Hudson-Hoosic Watershed study



Review countywide study scope, products and outreach process






## **FEMA Mitigation Division**

#### **Risk Analysis Branch**

**Goal: Stronger and Safer Communities** 



3

Increasing Resilience Together





# The Value of Updated Flood Maps for Local Communities



## Flood Maps Guide Progress By:







| <b>-</b> |
|----------|
|          |

| G | ഹ |
|---|---|

Identifying and Assessing Flood Risk Establishing Flood Insurance Rates

Determining Local Land Use

Informing Engineers and Developers Equipping Emergency Managers





#### Why we are here

We want to help communities understand flood risk and take action to reduce it because...

| Risk changes | <ul> <li>All floods are different. Nature</li> </ul> |
|--------------|------------------------------------------------------|
| over time    | and communities change.                              |

| Flooding | <ul> <li>Communities may face flooding.</li> </ul> |
|----------|----------------------------------------------------|
|          | Is your community active or                        |
| happens  | reactive to flood risk?.                           |

Mitigation is Possible

 Proactive communities plan to reduce flood impacts and other hazards.

## Why Update Flood Maps?

The Federal Emergency Management Agency (FEMA) manages the National Flood Insurance Program (NFIP)

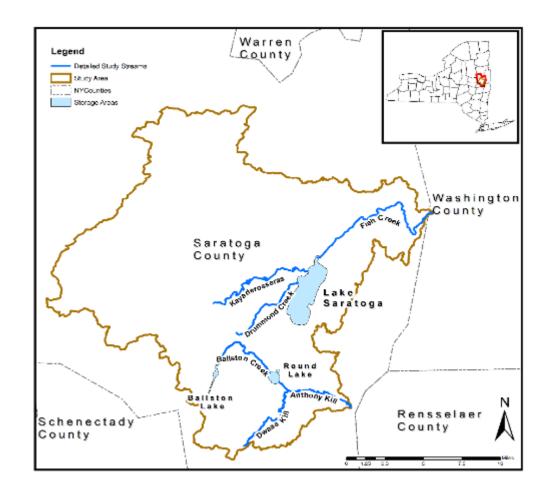
| NFIP Policies<br>for Saratoga<br>communities | NFIP Claims<br>for affected<br>communities | FEMA Insurance<br>Claims Paid in<br>affected<br>communities | Hazard Mitigation<br>Plan Status   |
|----------------------------------------------|--------------------------------------------|-------------------------------------------------------------|------------------------------------|
| 739                                          | 491                                        | \$8,031,000                                                 | Approvable,<br>Pending<br>Adoption |







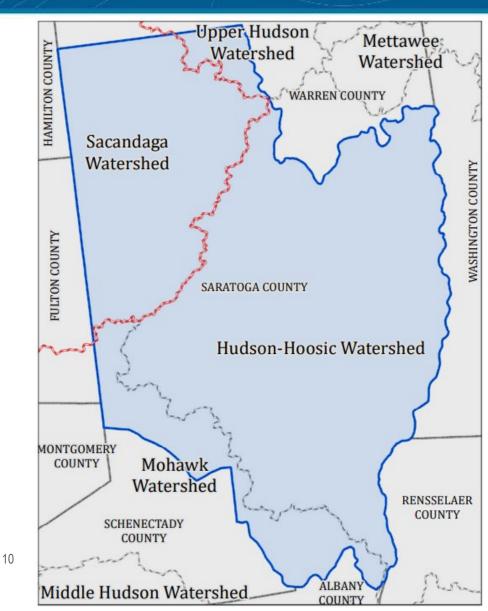
#### How did we get here? Review past activities




#### **Discovery/Post-Discovery Progress** *Recap*

#### Hudson-Hoosic Watershed

- Meetings held in October 2012
- Discovery project completed in April 2014
- Community input guided FEMA priorities
- Saratoga County's Highest Priorities included:
  - Kayaderosseras Creek
  - Fish Creek
  - Dwass Kill
  - Drummond Creek
  - Anthony Kill



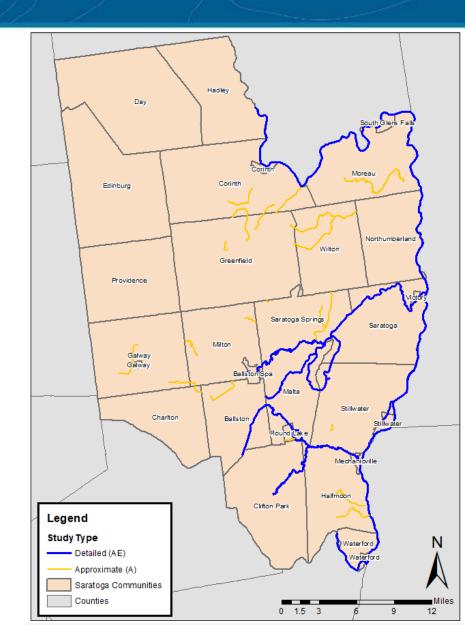





#### **Discovery/Post-Discovery Progress** *Recap*

- Sacandaga Watershed
- Meetings held in July 2018
- Discovery project completed in March 2019
- FEMA reviewed community input to determine priorities
- Saratoga County's Highest Priorities included:
  - Great Sacandaga Lake
  - South Branch of Kayaderoserras Creek






#### Leveraged Data Recap

- Flood Risk Review meetings held in November 2016
- Detailed 142 miles
  - Anthony Kill
  - Ballston Creek and Lake
  - Drummond Creek
  - Dwaas Kill
  - Fish Creek
  - Hudson River
  - Kayaderosseras Creek
  - Mohawk River
  - Round and Saratoga Lake
- Approximate 70 miles
- Any local flood studies that FEMA should be aware of?

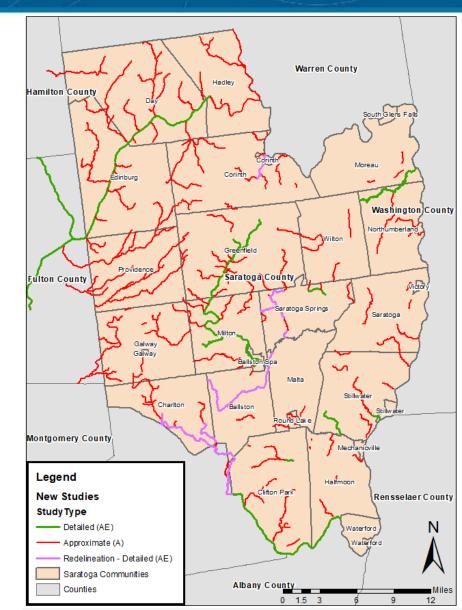








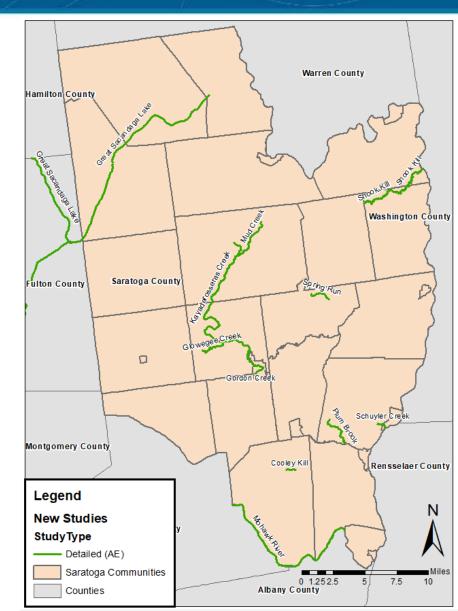



# What is being studied now? Discuss scope of new study



#### Saratoga County, Countywide Flood Risk Study Scope

- First time digital maps
- Additional flooding sources analyzed
  - Detailed riverine studies (AE Zone) 10 streams, 56 miles
  - Detailed lake studies (AE) 1 lake, 34 miles
  - Approximate (A) studies multiple streams, 359 miles
  - Redelineation (AE) 9 streams, 38 miles
- 30 updated communities
- 197 map panels
- Review meetings
  - Hydrology Meeting
  - Hydraulics Meeting
  - Flood Risk Review Meeting





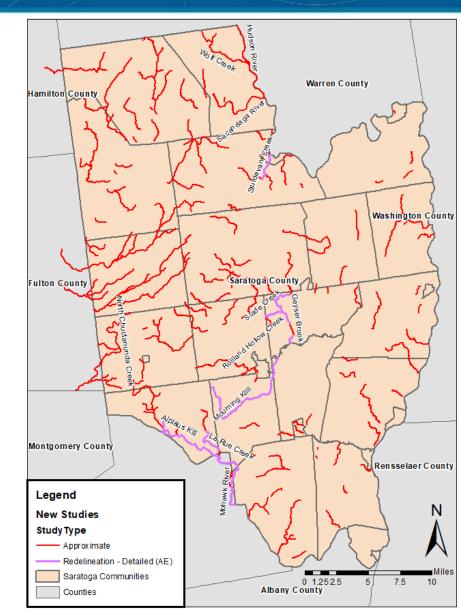

#### Detailed (AE Zone) Study Scope

#### I1 Studied Streams – 56 miles total

- Cooley Kill 0.8 miles
- Glowegee Creek 2.8 miles
- Gordon Creek 0.8 miles
- Kayaderosseras Creek 20.6 miles
- Mohawk River 13.9 miles
- Mud Creek 1.4 miles
- Plum Brook 3.1 miles
- Schuyler Creek 0.9 miles
- Snook Kill 9.5 miles
- Spring Run 1.8
- I Studied Lake 34 miles
  - Great Sacandaga Lake 34.4 miles

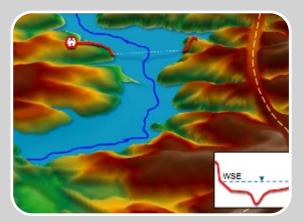





# Approximate (A Zone) Study and Redelineation Scope

- Completes countywide stream coverage
- Approximate Streams 359 miles
  - Notable streams include:
    - Alplaus Kill 3.4 miles
    - Hudson River 7.0 miles
    - North Chuctanunda Creek 10.7 miles
    - Sacandaga River 6.5 miles
    - Wolf Creek 5.2 miles

#### Redelineated Streams – 38 miles


- Notable streams include:
  - Alplaus Kill 8.3 miles
  - La Rue Creek 3.1 miles
  - Mohawk River 5.0 miles
  - Mourning Kill 11.4 miles





### **Flood Hazard Analysis**







#### Hydrology

Volume of water? Peak Flows?

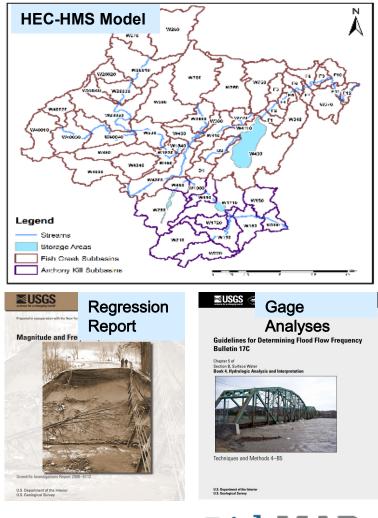
When will storm water or runoff make it to the stream?

#### **Hydraulics**

Will the stream in question be able to convey all storm water or runoff that arrives?

# Floodplain Mapping

What areas of a community will be inundated based on engineering analysis?

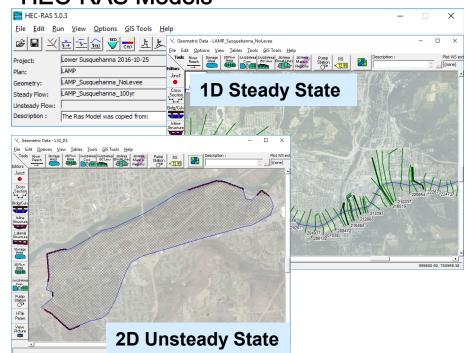

### **Engineering Methods - Hydrologic Analysis**

#### Typical Methods FEMA utilizes

- Statistical Gage Analyses
- Regression Analyses
- Rainfall Runoff Modeling
- Gage/Regression are based on availability stream gage data
- Rainfall-Runoff physical modeling chosen due to limited gage data
  - Leverage exiting HEC-HMS models from Hudson-Hoosic Watershed studies including Mohawk River
- Discharges developed for

FEMA

- **10%**, 4%, 2%, 1%, 1%+, 1%-, 0.2%
- Inputs for hydraulic analyses






## **Engineering Methods - Hydraulic Analysis**

- Modeling developed using USACE's HEC-RAS Program
  - One Dimensional (1D) Steady State
  - One Dimensional (1D) Unsteady State
  - Two Dimensional (2D) Unsteady State
- Terrain Data
  - Provides topographic elevation information
  - Supplemented by field survey
  - Data Sources:
    - 2018 FEMA Bare Earth DEM (QL2)
    - 2015 NYS Bare Earth DEM (QL2)
    - 2012 FEMA Bare Earth DEM (QL3)
    - 2012 NYS Bare Earth DEM (QL3)
- Field Survey for Detailed only
  - Collection underway: 70 structures and 315 under water channel sections

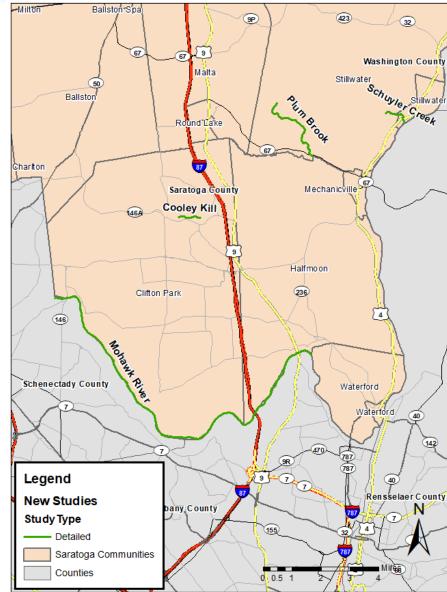
#### **HEC-RAS Models**



- Flood Hazard Data Generated
  - Elevations: 10%, 4%, 2%, 1%, 1%+, 1%-, 0.2%
  - Floodplain extents: 10%, 1%, 0.2%, Floodway






#### **Engineering Methods - Detailed Streams**

19

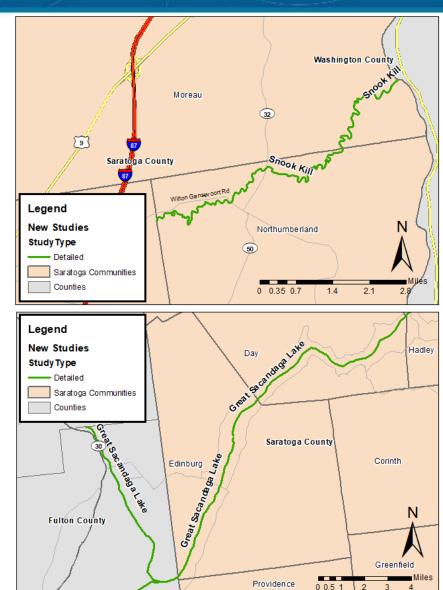
- Hydrologic Method: HEC-HMS, rainfall-runoff model from Hudson-Hoosic Study
  - Mohawk River
  - Cooley Kill
  - Plum Brook
- Hydrologic Method: USGS Regression Equations
  - Schuyler Creek
- Hydraulic Method: HEC-RAS, 1D steady state hydraulic model
  - Mohawk River 13.9 miles
  - Cooley Kill 0.8 miles
  - Plum Brook 3.1 miles

FEMA


Schuyler Creek – 0.9 miles



#### **Engineering Methods - Detailed Streams**

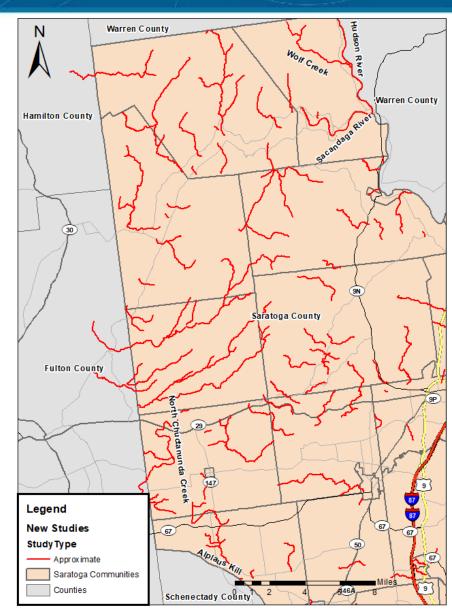

- Hydrologic Method: HEC-HMS, rainfall-runoff model from Hudson-Hoosic Study
  - Mud Creek
  - Kayaderosseras Creek
  - Glowegee Creek
  - Gordon Creek
  - Spring Run
- Hydraulic Method: HEC-RAS, 1D steady state hydraulic model
  - Mud Creek 1.4 miles
  - Kayaderosseras Creek 19.8 miles
  - Glowegee Creek 2.8 miles
  - Spring Run 1.8 miles
- Hydraulic Method: HEC-RAS, 2D unsteady state hydraulic model
  - Kayaderosseras Creek 0.8 miles
  - Gordon Creek 0.8 miles





#### **Engineering Methods - Detailed Streams**

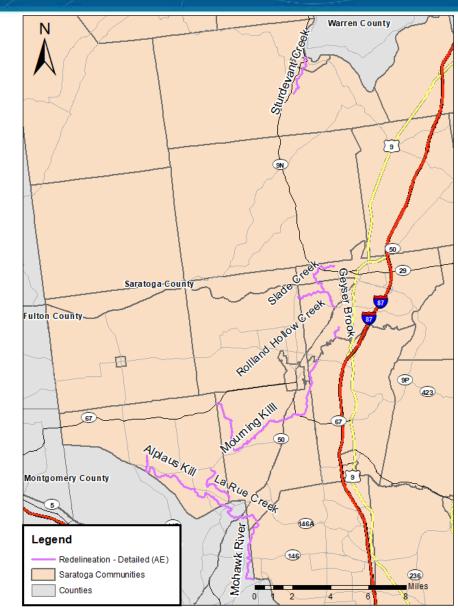
- Hydrologic Method: USGS Regression Equations
  - Snook Kill
- Hydrologic Method: Statistical gage analysis
  - Great Sacandaga Lake
- Hydraulic Method: HEC-RAS, 1D steady state hydraulic model
  - Snook Kill 9.5 miles
- Hydraulic Method: Lake Stage frequency analysis
  - Great Sacandaga Lake 34.4 miles






# **Engineering Methods - Approximate Streams**

- Approximate Streams 359 miles
- Hudson River 7.0 miles
  - Hydrologic Method: statistical gage analysis
  - Hydraulic Method: 1D steady state hydraulic model coordinated with Warren County project
- Sacandaga River 6.5 miles
  - Hydrologic Method: statistical gage analysis
  - Hydraulic Method: 1D steady state hydraulic model
- Other notable streams
  - Alplaus Kill 3.4 miles
  - North Chuctanunda Creek 10.7 miles
  - Wolf Creek 5.2 miles
- ▶ Floodplain extents for 10%, 1%, and 0.2%



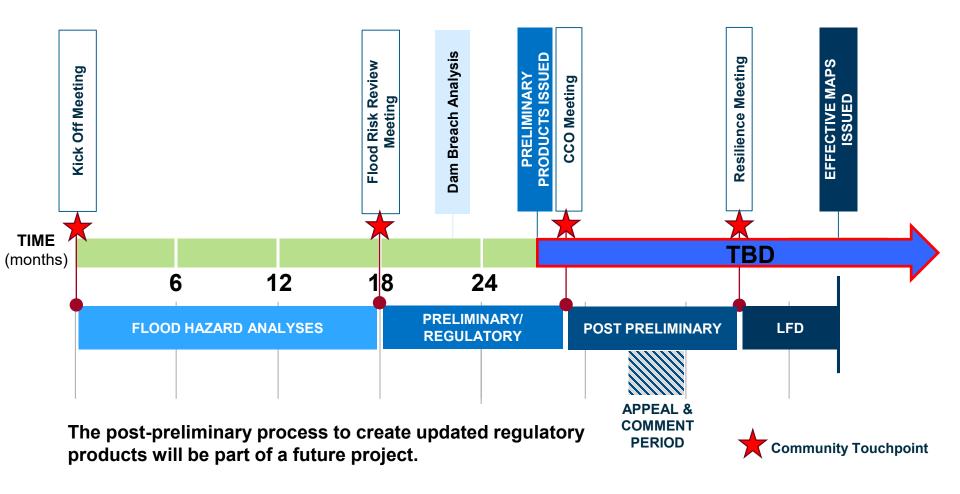



### **Redelineated Streams**

#### Redelineated Streams (AE) – 38 miles

- Notable streams include:
  - Alplaus Kill 8.3 miles
  - La Rue Creek 3.1 miles
  - Mohawk River 5.0 miles
  - Mourning Kill 11.4 miles
- No hydrology or hydraulic analyses conducted
- Flood extents are redelineated using the latest LiDAR topographic data
- Vertical Datum Conversion conducted
- Existing flood elevations converted from NGVD29 to NAVD88 datum








#### Where are we now and what is next? Discuss next steps



### **Overall Flood Risk Project Timeline**





## **Major Study Milestones**

- Data Development (October 2021)
  - Terrain processing
  - Engineering Methods Concurrence (620 letters)
  - Field reconnaissance and survey
  - Hydrologic modeling
  - Hydraulic modeling
  - Floodplain mapping (workmaps)

- Flood Risk Review Meeting (December 2021)
  - Review work map products with communities
- Preliminary Products Update (FIRM & FIS)
  - Preliminary Maps Issued (September 2022)





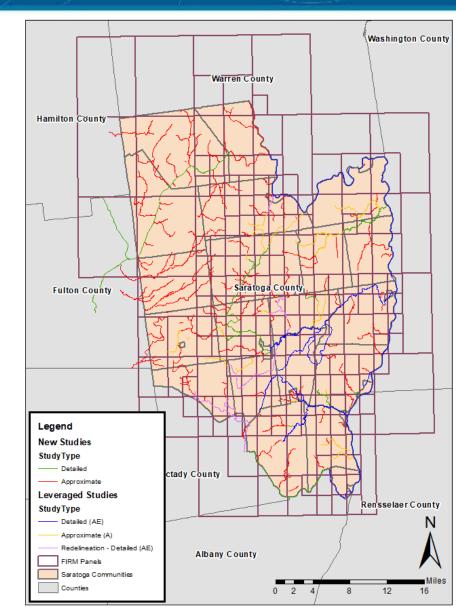




## What will communities receive? Preliminary and Planning Products



## Work Maps


- Draft floodplain mapping shared using work maps
- Flood Risk Review meeting provides a review of the new engineering analysis results, allowing communities to:
  - Identify potential updates for Hazard Mitigation Plans
  - Provide insight and input on hydrology and hydraulic results in updated study area
  - Seek local buy-in and review possible use of analysis
  - Identify areas of large changes and potential opportunities for risk reduction
  - Identify risk communications needs and options





## **Preliminary Mapping Products**

- Preliminary product development commences after work map comment period
- Seamless countywide mapping produced
  - Incorporates existing Hudson-Hoosic mapping
- Preliminary Digital Flood Insurance Rate Map (DFIRM) Database
- 197 Preliminary FIRM Panels
- Flood Insurance Study (FIS) Report





#### Flood Insurance Rate Map (FIRM) Example

| L_Comm_Info.dbf          |
|--------------------------|
| L_Comm_Revis.dbf         |
| L_ManningsN.dbf          |
| L_Meetings.dbf           |
| L_Mtg_POC.dbf            |
| L_Pol_FHBM.dbf           |
| L_Source_Cit.dbf         |
| L_Summary_Discharges.dbf |
| L_XS_Elev.dbf            |
| L_XS_Struct.dbf          |
| 國 S_Base_Index.shp       |
| S_BFE.shp                |
| S_FIRM_Pan.shp           |
| S_Fld_Haz_Ar.shp         |
| S_FId_Haz_Ln.shp         |
| S_Gen_Struct.shp         |
| 🕶 S_Hydro_Reach.shp      |
| 😁 S_Label_Ld.shp         |
| S_Label_Pt.shp           |
| S_Nodes.shp              |
| ⊠ S_PLSS_Ar.shp          |
| ⊠ S_Pol_Ar.shp           |
| 😁 S_Profil_BasIn.shp     |
| S_Stn_Start.shp          |
| S_Subbasins.shp          |
| 図 S_Submittal_Info.shp   |
| S_Trnsport_Ln.shp        |
| 🔁 S_Wtr_Ln.shp           |
| 🔁 S_XS.shp               |
| Study_Info.dbf           |
|                          |

FLOOD INSURANCE STUDY FEDERAL EMERGENCY MANAGEMENT AGENCY

#### VOLUME 1 OF 2

dBASE Table dBASE Table

dBASE Table dBASE Table dBASE Table dBASE Table

dBASE Table

dBASE Table

dBASE Table

Shapefile Shapefile

Shapefile

Shapefile

Shapefile

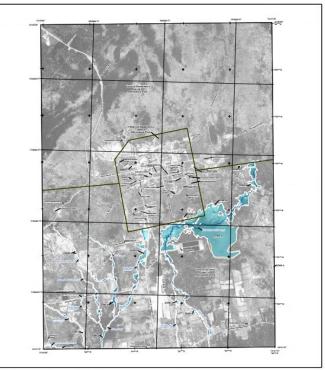
Shapefile

Shapefile

Shapefile

Shapefile dBASE Table

#### CLINTON COUNTY, NEW YORK AND INCORPORATED AREAS


| COMMUNITY NAME           | COMMUNITY NUMB |
|--------------------------|----------------|
| ALTONA, TOWN OF          | 361379         |
| AUSABLE, TOWN OF         | 360165         |
| BEEKMANTOWN, TOWN OF     | 360166         |
| BLACK BROOK, TOWN OF     | 361309         |
| CHAMPLAIN, TOWN OF       | 361311         |
| CHAMPLAIN, VILLAGE OF    | 360167         |
| CHAZY, TOWN OF           | 361310         |
| CLINTON, TOWN OF         | 361380         |
| DANNEMORA, TOWN OF       | 361381         |
| DANNEMORA, VILLAGE OF    | 360024         |
| ELLENBURG, TOWN OF       | 361382         |
| MOOERS, TOWN OF          | 361383         |
| PERU, TOWN OF            | 361384         |
| PLATTSBURGH, CITY OF     | 360168         |
| PLATTSBURGH, TOWN OF     | 360169         |
| ROUSES POINT, VILLAGE OF | 360170         |
| SARANAC, TOWN OF         | 360171         |
| SCHUYLER FALLS, TOWN OF  | 360172         |

PRELIMINARY 2/27/2020



FLOOD INSURANCE STUDY NUMBER 36019CV000B Version Number 2.6.3.0

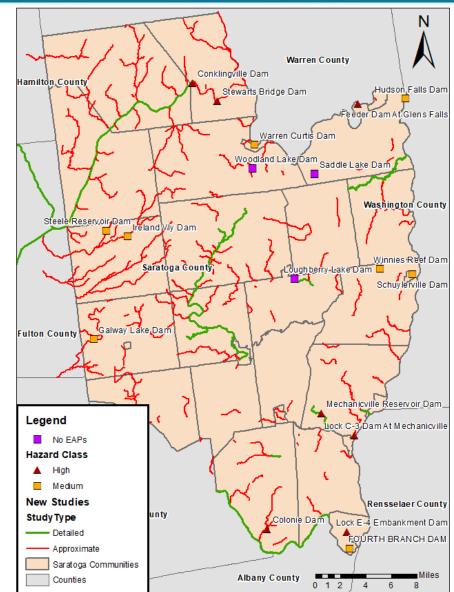
**REVISED:** 







RiskMAP




### **Dam Breach Analysis**

- Up to 5 Intermediate/High Hazard Dams analyzed
  - 11 Intermediate hazard class (B)
  - 7 High hazard class (C)
- Engineering analyses developed for FIRM will be leveraged
- EAP analyses could be leveraged
  - ▶ 15 out of 18 (Class B and C)
- Flood Inundation Maps will be developed







## **Knowing the Risk**

#### Communities that develop a sound understanding of flood risk will be more empowered to...

- Effectively plan use of resources for natural hazards and potential disasters;
- Implement effective hazard mitigation projects;
- Effectively regulate current and future development without increasing risk; and/or
- Effectively communicate about natural hazards to its residents about personal and community mitigation projects that can reduce long-term risk.







#### Contacts

#### FEMA Project Monitor

Shudipto Rahman 202-702-4273 shudipto.rahman@fema.dhs.gov

#### FEMA Outreach Coordinator

Stephanie Gootman 202-802-3137 stephanie.gootman@fema.dhs.gov

#### STARR II Project Manager

David Sutley, PE 303-951-0612 dsutley@dewberry.com

#### STARR II Regional Support Center Lead

Curtis Smith 646-490-3929 curtis.smith@stantec.com

#### NY State Department of Environmental Conservation

Regional Contact: Vince Spadaro Central Office Contact: Brad Wenskoski 518-402-8185 floodplain@dec.ny.gov



#### **Questions?** Comments?



# Thank you!

