

Agenda

Recap/Refresh

Hydrology Analysis Review

Path Forward

Project Recap

Projects in Chautauqua County

- Chautauqua County Scoping of Priorities
 - Completed in November 2020
- Western New York BLE
 - Completed in November 2020
- Lake Erie Coastal
 - December 2017

Current Chautauqua Study Progress

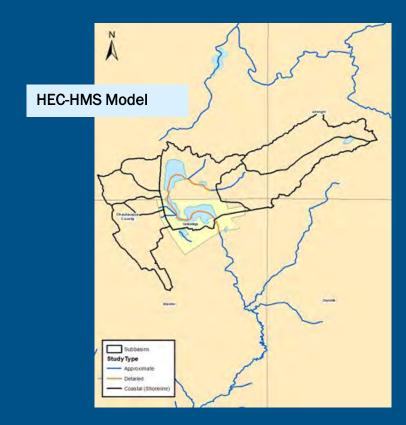
- Kickoff meeting: Held virtually February 8, 2021
- Engineering models notification: March 2, 2021
- Field survey: Spring 2021 Fall 2021
- Hydrologic analysis: June 2021 Present

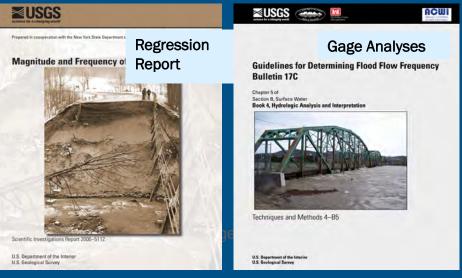
BLE Data Available - <u>Draft Data Viewer</u>

Coastal Data Available - <u>Draft Data Viewer</u>

Project Scope

- First time digital maps
- Flooding sources analyzed
 - □ Detailed riverine studies (AE) 47 streams, 78 miles
 - Detailed lake studies (AE) 3 Lake, 22 miles
 - Approximate studies (A) multiple streams, 977 miles
 - Will tie in to existing coastal mapping
- 45 Updated Communities 232 Map Panels
- Review Meetings
 - Hydrology Meeting
 - Hydraulics Meeting
 - Flood Risk Review Meeting





Hydrologic Analysis Methods

- Typical Methods FEMA utilizes
 - Statistical Gage Analyses
 - Regression Analyses
 - Rainfall Runoff Modeling
- Gage/Regression are based on stream gage data
- Rainfall-Runoff based on estimated hydrologic parameters
- Discharges developed for
 - □ 10%, 4%, 2%, 1%, 1%+, 1%-, 0.2%
 - Inputs for hydraulic analyses

Hydrology - Stream Gage Analysis

USGS Gage Number	Stream Name	Stream Gage Name	Drainage Area (mi ²)	Number of Systematic Peaks	Period of Record (Years)
03013800	03013800 Ball Creek 04213376 Canadaway Creek 04213500 Cattaraugus Creek	Ball Creek at Stow, NY	9.6	39	1974 - 2012
04213376		Canadaway Creek at Fredonia, NY	32.9	34	1979 - 2020
04213500		Cattaraugus Creek at Gowanda, NY	436	79	1940 - 2020
03014500	Chadakoin River	Chadakoin River at Falconer, NY	194	85	1935 - 2019
03013000	Conewango Creek	Conewango Creek at Waterboro, NY	290	56	1939 - 1994

 Flow gage analysis performed in support of regression analysis

- Viable gage = minimum 10 years current record
- Bulletin 17C methodology

Hydrology – Lake Gage Analysis

USGS Gage Number	Stream Name	Stream Gage Name	Drainage Area (mi²)	Number of Systematic Peaks	Period of Record (Years)
03013946	Chautauqua Lake	Chautauqua Lake at Bemus Point, NY	189	22	1976 – 1998

Statistical distribution fitting analysis

- USGS Regression Equation Discharges leveraged from Western NY BLE Project
- Relationships between peak flows and watershed characteristics
- Regional Regression Equations
- Gage Weighting

Hydrology - Regression Analysis

- Regression Analysis = Chautauqua (1,043 miles)
 - 66 miles of Detailed streams (AE Zone)
 - 977 miles of Approximate streams (A Zone)

Hydrology - Regression Analysis

- USGS New York regression equations
 - □ SIR 2006-5112

- Study area falls within USGS NY regression Region 5
- Method for Zone A streams

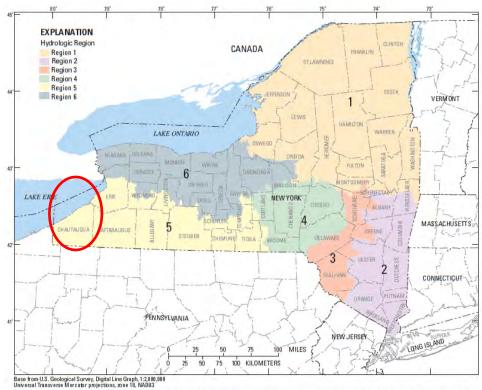


Figure 2. Six hydrologic regions of New York and locations of 388 streamflow-gaging stations represented in this study. (Map numbers refer to streamflow-gaging stations shown in tables 7 and 8.)

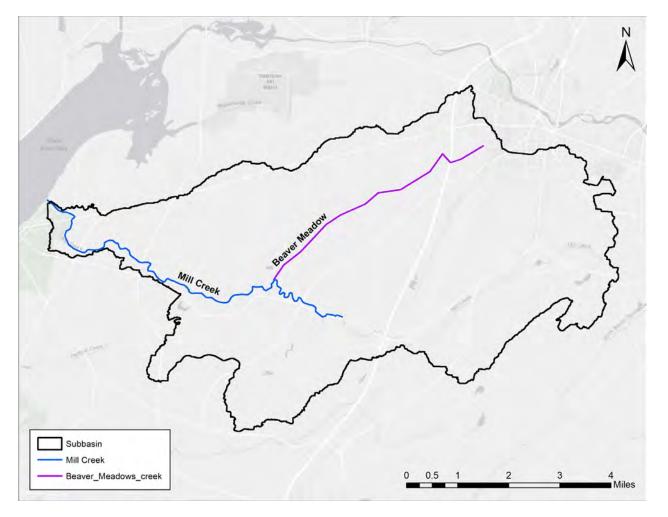
Summary of Regression Equations

Factors Considered

- Drainage area (square miles)
- Mean annual precipitation (inches per year)
- Main channel slope (feet/mile)

Summary of Gage Weighting Streams with Regression Discharges

- Gaged Sites
 - Log Pearson Type III, Bulletin 17C
 analysis to determine the discharges
- Ungaged Sites on Gaged Streams
 - For unregulated streams, the gage discharge is weighted with the regression discharge.
 - Performed at all the flow change locations within 50% to 150% of the gage drainage area


Example stream gage. Source: USGS/ Robert Swanson

Hydrology – Rainfall-Runoff Modeling

- 2 lakes (39.6 sq. mi)
 - Cassadaga Lakes 3 miles
 - Findley Lake 2 miles
 - Scoped to be studied using stage frequency analysis.
 - No gage data HECHMS rainfall runoff model used to estimate frequency stages.

Rainfall-Runoff Methodology

- HEC-HMS 4.6.1 was used
- Rainfall Depths: NOAA Atlas 14 Precipitation Frequency Data Server, 24-hour duration.
- Loss Methodology: SCS Curve Number
- Hydrograph Methodology: SCS Unit Hydrograph
 - Lag Time (60% of Time of Concentration)
- Channel Routing: Muskingum-Cunge using 8-point cross-sections
- Reservoir Routing: Stage-Discharge curve developed for all reservoirs/ Lakes using HEC-RAS
 - Reservoir/lakes then modeled as a function of storage (Elevation-Area-Discharge) method

Model Validation / Results

Check computed flows against results from Effective FIS

Gage Analysis

Gage Analysis results - Comparison with FIS values

Stream Name	Drainage Area (mi²)	Effective Discharge (cfs)		Restudied Discharge (cfs)		Difference	
		1-Pct	0.2-Pct	1-Pct	0.2-Pct	(%)	(%)
Ball Creek	9.7	1,430.0	1,850.0	2,004.9	2,531.7	40%	37%
Canadaway Creek	33.3	5,760.0	7,900.0	11,056.3	16,941.2	92%	114%
Canadaway Creek	33.0	5,620.0	7,180.0	11,044.2	16,941.2	97%	136%
Canadaway Creek	30.7	5,330.0	6,820.0	10,141.9	15,404.3	90%	126%
Canadaway Creek	27.2	4,890.0	6,800.0	8,816.8	13,161.5	80%	94%
Cattaraugus Creek	561.6	45,150	57,000	48,800	64,300	8%	13%
Chadakoin River	198.9	2,100.0	2,300.0	2,484.6	2,913.5	18%	27%
Chadakoin River	193.8	2,100.0	2,300.0	2,420.8	2,838.8	15%	23%
Chadakoin River	188.8	2,050.0	2,300.0	2,358.4	2,765.5	15%	20%

Lake Analysis

Lake Analysis results - Comparison with FIS values

Stream Name	Drainage Area	Effective Water Surface Elevation (ft NAVD 88)		Restudied Water Surface Elevation (ft NAVD 88)		Difference	
	(mi²)	1-Pct	0.2-Pct	1-Pct	0.2-Pct	(ft)	(ft)
Cassadaga Lakes	6.0	1307.9	1308.9	1307.9	1308.9	0.0	0.0
Findley Lake	4.9	1422.2	1422.8	1421.6	1422.7	-0.6	-0.1
Chautauqua Lake	189	1310.0	1310.3	1310.5	1310.9	0.5	0.6

Chautauqua County Next Steps

Chautauqua County Next Steps

- Hydraulic analysis
 - Hydraulic modeling/report/submittal
 - Hydraulic analysis webinar
- Floodplain Mapping
- Flood Risk Review meeting
 - Comment period for communities

Project Timeline towards Preliminary Issuance

We are Here

Hydrology Presentation

September 2021

Hydraulics Presentation

Spring 2022

Floodplain Mapping

Winter 2022

Flood Risk Review Meeting

Spring 2023

Preliminary Map Products Issued

Fall 2023*

*Current timeline could be impacted by Flood Risk Review Comments

Graphic Above Not to Scale

Contacts

Shudipto Rahman FEMA Project Monitor <u>shudipto.rahman@fema.dhs.gov</u>

Brienna Wirley
New York State Department of Environmental
Conservation
brienna.wirley@dec.ny.gov

Patrick Dobbs, PE STARR II Project Manager patrick.dobbs@stantec.com

Rosemary Bolich
STARR II Regional Support Center/
Deputy Task Order Manager
rosemary.bolich@stantec.com

Thank you!

