Flood Risk Project

FEMA

Genesee County, New York Hydrology Review Meeting September 21, 2021

Agenda

Recap/Refresh

Hydrology Analysis Review Path Forward

Project Recap

- Projects in Genesee County
 - Lake Ontario Lower Genesee
 Watersheds Discovery
 - Meeting held Nov 2013
 - Completed in July 2016

Current Genesee Study Progress

- Kickoff meeting: Held virtually January 21, 2021
- Engineering models notification: February 17, 2021
- Field survey: Completed
- Hydrologic analysis: June 2021 Present

Project Scope

- First time digital maps
- Flooding sources analyzed
 - Detailed riverine studies (AE) 6 streams, 22 miles
 - Detailed lake studies (AE) 1 Lake, 1.3 miles
 - Approximate studies (A) multiple streams, 588 miles
- 21 Updated Communities 110 Map Panels
- Review Meetings
 - Hydrology Meeting
 - Hydraulics Meeting
 - Flood Risk Review Meeting

Hydrologic Analysis Methods

- Typical Methods FEMA utilizes
 - Statistical Gage Analyses
 - Regression Analyses
 - Rainfall Runoff Modeling
- Discharges developed for
 - 10%, 4%, 2%, 1%, 1%+, 1%-, 0.2%
 - Inputs for hydraulic analyses

Regression Analysis

- USGS Stream Stats Discharges
- Relationships between peak flows and watershed characteristics
- Regional Regression Equations
- Urban Regression Equations

Hydrology – Regression Analysis

- Regression Analysis = Orange
 - 15 miles of Detailed streams (AE Zone)
 - 588 miles of Approximate streams (A Zone)

Hydrology – Regression Analysis

- USGS New York regression equations
 SIR 2006-5112
- Study area falls within USGS NY regression Region 6
- USGS StreamStats v5.02 p7

FEMA

Summary of Regression Equations

$$Q_2 = 8.98A^{0.807}(ST + 0.5)^{-0.258}(RUNF)^{0.740}(EL12 + 1)^{0.093}(SR)^{0.209}$$
(4.1)

$$Q_{10} = 23.4A^{0.810}(ST + 0.5)^{-0.218}(RUNF)^{0.600}(EL12 + 1)^{0.133}(SR)^{0.268}$$
(4.2)

$$Q_{25} = 32.1A^{0.815}(ST + 0.5)^{-0.200}(RUNF)^{0.555}(EL12 + 1)^{0.148}(SR)^{0.290}$$
(4.3)

$$Q_{50} = 39.0A^{0.819}(ST + 0.5)^{-0.188}(RUNF)^{0.528}(EL12 + 1)^{0.157}(SR)^{0.305}$$
(4.4)

$$Q_{100} = 46.0A^{0.823}(ST + 0.5)^{-0.177}(RUNF)^{0.505}(EL12 + 1)^{0.166}(SR)^{0.318}$$
(4.5)

$$Q_{500} = 62.7A^{0.834}(ST + 0.5)^{-0.155}(RUNF)^{0.466}(EL12 + 1)^{0.183}(SR)^{0.345}$$
(4.6)

where

FEMA

 Q_x = peak flow for x-year storm event (cubic feet per second)

A = drainage area (square miles)

RUNF = mean annual runoff (inches)

ST = basin storage (percentage of total drainage area)

EL12 = percentage of drainage basin at or greater than 1,200 feet above sea level

9

SR = ratio of main-channel slope to basin slope within the drainage basin

Manual Basin Adjustments

- Reviewed StreamStats basin delineations against project DEM
- Adjusted basin boundaries as necessary within GIS
- StreamStats used to manually update drainage area parameter and re-compute flow results
 - Other parameters were assumed to be unchanged

C Calculate Missing Parameters

Parameter	Value		
DRNAREA	6.2		
SLOPERATIO	0.0108		
EL1200	0		
STORAGE	26.4		
MAR	19		

Urban Adjustment

- Base regression equations not applicable to urban areas
- Peak flows adjusted for basins with >15% urban land use (from NLCD layer) based on USGS WSP 2207 (1983)
- Affected Reaches:
 - Mud Creek Tributary 2, Crooked Creek
 Tributary 2, Crooked Creek Tributary 3, and
 Black Creek Tributary 3

Urban Adjustment Factor – Basin Level View

Rainfall-Runoff Analysis

- Creation of hydrologic models to calculate flows at outlet, node or subbasin
- Various inputs required
- Typically used for detailed studies

Hydrology – Rainfall-Runoff Modeling

- Rainfall-Runoff = Red
- 98 miles leveraged from Upper Oak Orchard Watershed study (Ontario Countywide, 2020)
- New study: total 4 streams (7 miles)
 - Mud Creek Tributary 2
 - Black Creek
 - Oatka Creek
 - Oatka Creek Tributary
- Horseshoe Lake
 - Scoped to be studied using stage frequency analysis.
 - No gage data HEC-HMS rainfall runoff model used to estimate frequency stages.

14

Rainfall-Runoff Methodology

- HEC-HMS 4.5 was used
- Rainfall Depths: NOAA Atlas 14 Precipitation Frequency Data Server, 24-hour duration.
- Frequency Storm temporal distribution
- Loss Methodology: SCS Curve Number (TR-55), with average antecedent runoff condition
- Hydrograph Methodology: SCS Unit Hydrograph
 - □ Lag Time (60% of Time of Concentration)
- Channel Routing: Muskingum-Cunge using 8-point cross-sections
- Reservoir Routing: Stage-Storage curve developed from project topography

NOAA Atlas 14 Rainfall Data

 Area Reduction Factors were applied as appropriate for watersheds greater than 10 sq. mi

Cumulative 24-Hour Rainfall Depth (inches)								
Site	50%- Annual Chance	10%- Annual Chance	4%- Annual Chance	2%- Annual Chance	1%- Annual Chance	0.2%- Annual Chance		
Linden Station	2.27	3.30	3.94	4.41	4.92	6.48		
Black Creek Watershed	2.16	3.14	3.75	4.19	4.68	6.16		
Mud Creek Tributary 2 Watershed	2.27	3.30	3.94	4.41	4.92	6.48		
Oatka Creek Watershed	2.12	3.0B	3.67	4.11	4.59	6.04		

<u>TABLE 2-3</u> PRINCIPAL SPILLWAY VOLUME ADJUSTMENTS Minimum Areal Adjustment Ratios for Precipitation

2-7

Area	Area/Point Ratio for:		Area	Area/Point Ratio for:		
Sq. Mi.	1 Day	10 Days	Sq. Mi.	l Day	10 Days	
10. or less	1.000	1.000	45.	0.951	0.976	
15.	0.977	0.991	50.	0.948	0.974	
20.	0.969	0.987	60.	0.944	0.972	
25.	0.965	0.983	70.	0.940	0.970	
30.	0.961	0.981	80.	0.937	0.969	
35.	0.957	0.979	90.	0.935	0.967	
40.	0.954	0.977	100.	0.932	0.966	

Rainfall-Runoff Modeling – SCS Curve Numbers

- Soil Data from USGS SSURGO database
- Land use data from National Land Use Database (NLCD)
- Composite CN calculated for each sub-basin (TR-55 Methodology)
- Land use compared to recent aerial imagery to confirm
- Calculated composite Curve
 Numbers range from 67-85

Table 2-2a Runoff curve numbers for urban area	15 1/				
Course description		Land	Curve nu	imbers for	
Cover description	AC and all an ended		-nyarologic	son group	
	Average percent	1.12		- 12 T	
Cover type and hydrologic condition	impervious area 2/	A	В	С	D
Fair condition (grass cover 50% to 75%) Good condition (grass cover > 75%) Impervious areas:		49 39	69 61	79 74	84 80
Paved parking lots, roofs, driveways, etc.					
(excluding right-of-way)			98	98	98
(excluding right-of-way)					
(excluding right-of-way) Streets and roads: Paved; curbs and storm sewers (excluding			00	08	98
(excluding right-of-way) Streets and roads: Paved; curbs and storm sewers (excluding right-of-way)		98	98	00	
(excluding right-or-way) Streets and roads: Paved; curbs and storm sewers (excluding right-of-way) Paved; open ditches (including right-of-way)		98 83	98 89	92	93
(excluding right-of-way) Streets and roads: Paved; curbs and storm sewers (excluding right-of-way) Paved; open ditches (including right-of-way) Gravel (including right-of-way)		98 83 76	98 89 85	92 89	95 91

Hydrologic Soil Groups

 Soil types and hydrologic soil groups were determined from the USGS Soil Survey Geographic Database (2021).

Land Use

 Land use was determined from the National Land Cover Database (NLCD) from Multi-Resolution Land Cover Characteristics Consortium (2016).

Rainfall-Runoff Modeling – Time of Concentration (Tc) / Lag Time

- Longest flow path = longest time that a drop of water would take to travel through a watershed
- Developed from project DEM
- Flow paths split into different types:
 - Sheet flow maximum = 100 ft
 - Shallow concentrated flow: from end of sheet flow segment to visual open channel or 1,000 ft maximum
 - Channel flow: begins at end of shallow concentrated flow segment and ends at sub-basin outlet
- Lag times = 60% of Time of Concentration

Longest Flow Path Example

Gage Analysis

• Statistically analyze measured flows at gages

Hydrology – Gage Analysis

Gage Type	USGS Gage No.	Description	Description Drainage Area (sq. mi)		Number of Records
Discharge	4230380	Oatka Creek at Warsaw, NY	39.5	1964-2020	57
Discharge	4231000	Black Creek at Churchville, NY	130	1946-2020	75

 Flow gage analysis performed in support of rainfall-runoff model validation

- Viable gage = minimum 10 years current record
- Bulletin 17C methodology

Model Validation / Results

• Check computed flows against results from Effective FIS & LPIII values

Rainfall-Runoff Modeling – Model Validation

- 1. Compare drainage areas
- Drainage area of modeled location between 0.5 and 1.5 times that of gage
- 2. Estimate results that one would expect from gage using Drainage Area Ratio Method (USGS, 2008)
- 3. Adjust CN and lag time until model output is within 20% of expected gage output
- Adjustments within reasonable ranges of TR-55 tables check imagery
- 4. At locations where no suitable gage comparison exists, make same average CN and lag time adjustments from nearby model locations
- 5. Peak flows for all computed 1%-AEP were reviewed and deemed to be valid

Rainfall-Runoff Modeling – Model Validation

Rainfall-Runoff Modeling - Comparison to Effective Flows

- New study found to be relatively consistent with effective flows
- On average, updated flows 17% lower than effective

Rainfall-Runoff Modeling – Model Validation

- Regression and Rainfall-Runoff: refer to Hydrology Report for results tables
- Stillwater elevations from volumetric analyses:

Computed Lake Stillwater Elevations (Feet NAVD88)

Site	10%- Annual Chance	4%- Annual Chance	2%- Annual Chance	1%- Annual Chance	0.2%- Annual Chance	1% Plus – Annual Chance	1% Minus – Annual Chance
Horseshoe Lake	778.7	778.7	778.9	780.2	782.5	780.5	780.0

Genesee County Next Steps

Genesee County Next Steps

- Field reconnaissance
- Hydraulic analysis
 - Hydraulic modeling/report/submittal
 - Hydraulic analysis webinar
- Floodplain Mapping
- Flood Risk Review meeting
 - $\hfill\square$ Comment period for communities

Project Timeline towards Preliminary Issuance

*Current timeline could be impacted by Flood Risk Review or Preliminary Map Comments

Graphic Above Not to Scale

Contacts

Regina Majercak FEMA Project Monitor Tel. (917) 561-3256 regina.majercak@fema.dhs.gov

Stephanie Gootman FEMA Project Monitor Tel. (202) 802-3137 <u>stephanie.gootman@fema.dhs.gov</u>

Region 8 Contact: Brienna Wirley NY State Department of Environmental Conservation Tel. (585)226-5400 <u>floodplain@dec.ny.gov</u> <u>dep.r8@dec.ny.gov</u> Inger Sarappo STARR II Project Manager/ Tel. (615) 812 3597 inger.sarappo@stantec.com

Rosemary Bolich STARR II Regional Support Center/ Deputy Task Order Manager Tel. (646) 490-3848 rosemary.bolich@stantec.com

Rachael Mullaney STARR II Presenter Tel. (614) 643-4406 Rachael.mullaney@stantec.com

32

Thank you!

