

Flood Risk Project

Wyoming County, NY Project Kick Off Meeting

January 19, 2021

Wyoming County Map

Please Introduce Yourself

- Name
- ► Role
- Organization

Also, what do Wyoming communities aspire to accomplish using today's meeting? As partners with FEMA, it's important we create dialogue about your needs for flood risk information.

Today's Goals

The value of updated flood maps for your community Recap of Flood Risk Study history, including Scoping of Priorities and Base Level Engineering

Review countywide study scope, products and outreach process

FEMA Mitigation Division

Risk Analysis Branch Goal: Stronger and Safer Communities

Flood Maps Guide Progress By:

ഹ

Identifying and Assessing Flood Risk Establishing Flood Insurance Rates

Determining Local Land Use

Informing Engineers and Developers Equipping Emergency Managers

We want to help communities understand flood risk and take action to reduce it because...

Flooding	 Communities may face flooding.
h a sa sa a	Is your community active or
nappens	reactive to flood risk?.

Mitigation is Possible

 Proactive communities plan to reduce flood impacts and other hazards. The Federal Emergency Management Agency (FEMA) manages the National Flood Insurance Program (NFIP)

NFIP Policies for Wyoming communities	NFIP Claims for affected communities	FEMA Insurance Claims Paid in affected communities	Hazard Mitigation Plan Status
100	88	\$1,035,034	Expired/Update in Progress

How did we get here? Review past activities

Discovery / Post-Discovery Progress *Recap*

- Meetings held in November 2013
- Discovery project completed in July 2016
- Community input guided FEMA priorities
- Wyoming County's highest priorities included:
 - Oatka Creek
 - Village Brook
 - Streams in Town of Middlebury

FEMA

Wyoming County Map

Scoping of Priorities and BLE *Recap*

- Wyoming County
- Scoping meetings held in November 2019
- Goal of identifying and prioritizing streams for future FEMA Flood Insurance Studies (FIS) in Western NY
- Community and county officials invited to participate
- Base Level Engineering (BLE) performed for ~661 mi. in county
 - BLE combines high-resolution ground elevation data + modeling technology to identify flood hazards at a large scale (e.g. at a watershed level)

What is being studied now? Discuss scope of new study

Wyoming County Countywide Flood Risk Study Scope

- First time digital maps
- Additional flooding sources analyzed
 - Detailed riverine studies (AE) 11 streams, 27.6 miles
 - Detailed lake study (AE) 1 lake, 0.5 mile
 - Approximate (A) studies multiple streams, 548 miles
- 25 updated communities
- ▶ 97 map panels
- Review meetings
 - Hydrology Meeting
 - Hydraulics Meeting
 - Flood Risk Review Meeting

Detailed (AE Zone) Study Scope

- 11 Riverine Studies 27.6 miles total
 - Buffalo Creek 1.4 miles
 - Cattaraugus Creek 6.5 miles
 - Clear Creek 1.9 miles
 - Clear Creek Tributary 0.9 miles
 - Crystal Brook 0.5 miles
 - Genesee River 2.5 miles
 - Haskell Creek 1.1 miles
 - Oatka Creek 7 miles
 - Tonawanda Creek 5.2 miles
 - Wyoming Gulf Brook 0.6 miles

I Lake Study – 0.5 mile

Java Lake – 0.5 mile

Approximate (A Zone) Study Scope

- Completes countywide stream coverage
- Approximate Streams Total 548 miles
 - Notable streams include:
 - Genesee River 5.5 mi
 - East Koy Creek 15.6 mi
 - Tonawanda Creek 11.8 mi

Flood Hazard Analysis

Hydrology

Volume of water? Peak Flows?

When will storm water or runoff make it to the stream?

Hydraulics

Will the stream in question be able to convey all storm water or runoff that arrives?

Floodplain Mapping

What areas of a community will be inundated based on engineering analysis?

Engineering Methods - Hydrologic Analysis

Typical Methods FEMA utilizes

- Statistical Gage Analyses
- Regression Analyses
- Rainfall Runoff Modeling
- Gage/Regression Analyses are based on availability of stream gage data
- Rainfall-Runoff modeling
- Discharges developed for
 - 10%, 4%, 2%, 1%, 1%+, 1%-, 0.2% annual chance exceedance flood event

Engineering Methods - Hydraulic Analysis

- Modeling developed using USACE's HEC-RAS Program
 - One Dimensional (1D) Steady State
 - One Dimensional (1D) Unsteady State
- Terrain Data
 - Provides topographic elevation information
 - Supplemented by field survey
 - Data Source:
 - 2017 NYS Bare Earth DEM USGS Quality Level 2
- Field Survey for Detailed only
 - Collection underway: 51 structures and 186 under water channel cross sections

HEC-RAS Models

- Flood Hazard Data Generated
 - Water Surface Elevations for the 10%, 4%, 2%, 1%, 1%+, 1%-, 0.2% annual chance flood events
 - Floodplain extents: 10%, 1%, 0.2%, Floodway

Engineering Methods – Detailed Studies

Detailed Riverine Studies

Study Methods

- Hydrologic Method:
 - Statistical Gage Analysis
 - USGS Regression Equations
- Hydraulic Method: HEC-RAS, 1D steady state hydraulic model

Detailed Lake Study

- Study Methods
 - Hydrologic Method: Stage Frequency analysis
 - Hydraulic Method: Stage Frequency analysis
- Floodplain extents for 10%, 1%, and 0.2% annual chance exceedance flood event shown on FIRM

Engineering Methods -Approximate Studies

Approximate Riverine Studies

- Study Methods
 - Hydrologic Method:
 - Statistical Gage Analysis
 - USGS Regression Equations
 - Hydraulic Method: HEC-RAS, 1D steady state hydraulic model
- Floodplain extents for 10% and 1% annual chance exceedance flood event shown on FIRM

Where are we now and what is next? Discuss next steps

Overall Flood Risk Project Timeline

Major Study Milestones

- Data Development (Starting January 2021)
 - Terrain processing
 - Engineering Methods Concurrence (620 letters)
 - Field reconnaissance and survey
 - Hydrologic modeling
 - Hydraulic modeling
 - Floodplain mapping (workmaps)

- Flood Risk Review Meeting (Summer 2022)
 - Review work map products with communities
- Preliminary Products Update (FIS & FIRMs)
 - Preliminary Maps Issued (Est. September 2023)

What will communities receive? Preliminary and Planning Products

Work Maps

- Draft floodplain mapping shared using work maps
- Flood Risk Review meeting provides a review of the new engineering analysis results, allowing communities to:
 - Identify potential updates for Hazard Mitigation Plans
 - Provide insight and input on hydrology and hydraulic results in updated study area
 - Seek local buy-in and review possible use of analysis
 - Identify areas of large changes and potential opportunities for risk reduction
 - Source of best available information for grant applications
 - Identify risk communications needs and options

Preliminary Mapping Products

- Preliminary product development commences after work map comment period
- Seamless countywide mapping produced
- Preliminary Digital Flood Insurance Rate Map (FIRM) Database
- 97 Preliminary FIRM Panels
- Flood Insurance Study Report

FEMA

Flood Insurance Study Example

L_Comm_Info.dbf	dBASE Table
L_Comm_Revis.dbf	dBASE Table
L_ManningsN.dbf	dBASE Table
L_Meetings.dbf	dBASE Table
L_Mtg_POC.dbf	dBASE Table
L_Pol_FHBM.dbf	dBASE Table
L_Source_Cit.dbf	dBASE Table
L_Summary_Discharges.dbf	dBASE Table
L_XS_Elev.dbf	dBASE Table
L_XS_Struct.dbf	dBASE Table
S_Base_Index.shp	Shapefile
S_BFE.shp	Shapefile
S_FIRM_Pan.shp	Shapefile
⊠ S_Fld_Haz_Ar.shp	Shapefile
S_Fld_Haz_Ln.shp	Shapefile
S_Gen_Struct.shp	Shapefile
🕶 S_Hydro_Reach.shp	Shapefile
🕶 S_Label_Ld.shp	Shapefile
S_Label_Pt.shp	Shapefile
S_Nodes.shp	Shapefile
🖾 S_PLSS_Ar.shp	Shapefile
⊠ S_Pol_Ar.shp	Shapefile
💳 S_Profil_BasIn.shp	Shapefile
S_Stn_Start.shp	Shapefile
🖾 S_Subbasins.shp	Shapefile
S_Submittal_Info.shp	Shapefile
S_Trnsport_Ln.shp	Shapefile
🕶 S_Wtr_Ln.shp	Shapefile
S_XS.shp	Shapefile
Study_Info.dbf	dBASE Table

Flood Insurance Rate Map Example

Knowing the Risk

Communities that develop a sound understanding of flood risk will be more empowered to:

- Effectively plan resource use for natural hazards and potential disasters;
- Implement effective hazard mitigation projects;
- Effectively regulate current and future development without increasing risk; and/or
- Effectively communicate about natural hazards to residents regarding personal and community mitigation projects to reduce long-term risk.

Contacts

FEMA Project Monitor

Alan Springett 212-680-8557 alan.springett@fema.dhs.gov

FEMA Project Monitor

Stephanie Gootman 202-802-3137 stephanie.gootman@fema.dhs.gov

STARR II Project Manager

Patrick Dobbs, PE 615-794-1524 patrick.dobbs@stantec.com

STARR II Regional Support Center

Rosemary Bolich 646-490-3848 rosemary.bolich@stantec.com

NY State Department of Environmental Conservation

Central Office Contact: Brad Wenskoski Region 9 Contact: James Vogel 716-851-7000 james.vogel@dec.ny.gov

Questions? Comments?

Thank you!

