

金金合金合金合金

Flood Risk Project

Washington County, New York, Hydrology Meeting

November 12, 2019

Presentation Agenda

Project Introduction

- History
- Location and Study Streams
- Scope

Hydrology

- Gage Analysis
- Regression Analysis
- Rainfall-runoff Modeling
- Direct Volume Calculation
- Model Verification and Comparison to Effective Flows
- Next Steps

Presentation Recap

History

- Kickoff Meeting March 6, 2019
- Engineering Models Notification to communities March 29, 2019
- Hydrology Study April 2019 Present
- Survey April 2019 November 2019

► Three HUC8 Watersheds

- Lake Champlain (04150408)
- Mettawee River (04150401)
- Hudson-Hoosic (02020003)

Locations and Study Streams

- USGS Regression Equations (410.4 miles)
- Rainfall-Runoff Modeling (134.4 stream miles & 4 ponds/lakes)
- Lake Gage Analysis (Lake George and Dunham's Bay)
- Direct Volume Calculations (22 ponds/lakes)
- Previous Studies (191.2 miles)

FEMA

- 2018 Husdon-Hoosic Watershed Study
- 2018 Lake Champlain Study

Project Scope

- First time digital countywide maps
- Additional flooding sources studied
 - 101 miles Detailed (AE) streams and lakes
 - 459 miles Approximate (A) streams and lakes
- Includes Lake Champlain and Hudson-Hoosic Watershed study
- > 25 affected communities
- 174 map panels
- Multiple touchpoints

Project Scope Flood Frequency Terminology

- Recurrence Interval vs. Annual Exceedance Probability (AEP)
 - "100-year" vs. "1%-Annual-Chance"
 - Indicates event has x% chance of occurring in any given year
 - Interchangeable Terms DO NOT represent cyclical rain patterns

Recurrence intervals and probabilities of occurrences

Recurrence interval, years	Annual exceedance probability, percent
2	50
5	20
10	10
25	4
50	2
100	1
200	0.5
500	0.2

Hydrologic Analysis Methods

Typical FEMA methods

- Statistical gage analyses
- Regression analyses
- Rainfall-runoff analyses

Develop inputs for hydraulic analysis

- Statistical Gage analyses
 - Statistical analyses of flow/stage gage data
 - HEC-SSP program

Regression analyses

- Regional equations published by USGS
- USGS StreamStats web application

Rainfall-runoff analyses

- Physical modeling
- USACE HEC-HMS program

Gage Analysis

- USACE HEC-SSP used to perform Log-Pearson Type III Analysis of gage data
- All discharges and levels estimated according to Bulletin 17C Methodology
- Stream Gage Locations
 - Batten Kill
 - Bond Creek
 - Steele Brook
 - Poultney River
 - Mettawee River
 - Mettawee River Gage used to verify HEC-HMS model
- Lake Level Gage Location
 - Lake George

Increasing Resilience Together

Gages and Periods of Record

Flooding Gage Site N		Site Name	Drainage Area	Period o	f Record
Source	Identifier		(mi ²)	From	То
Bond Creek	1328000	Bond Creek at Dunham Basin, NY	14	3/20/1948	5/29/1984
Steele Brook	1329154	Steel Brook at Shushan, NY	3	3/5/1979	1/13/2018
Batten Kill	1329490	Batten Kill below Mill at Battenville, NY	396	04/1904	1/13/2018
Poultney River	4280000	Poultney River below Fair Haven, VT	187	3/16/1929	1/13/2018
Mettawee River	4280450	Mettawee River near Middle Granville, NY	167	3/14/1977	7/2/2017
Lake George	4278000	Lake George at Rogers Rock, NY	233	1/1/1914	1/1/2018

Gage Analysis Recommended Discharges and Elevations

			Discharge	es	
Gage Site	10% (10-Yr)	4% (25-Yr)	2% (50-Yr)	1% (100-Yr)	0.2% (500-Yr)
	cfs	cfs	cfs	cfs	cfs
Bond Creek	1,061	1,257	1,405	1,558	1,920
Steele Brook	143	185	219	254	340
Batten Kill	11,765	15,346	18,339	21,607	30,488
Poultney River	7,356	9,413	11,036	12,745	17,035
Mettawee River	8,103	10,921	13,315	15,984	23,502

	Elevations (NAVD88)								
Coro Sito	10%	4%	2%	1%	0.2%				
Gage Site	(10-Yr)	(25-Yr)	(50-Yr)	(100-Yr)	(500-Yr)				
	ft	ft	ft	ft	ft				
Lake George	320.3	320.4	320.6	320.7	321.0				
Dunham's Bay	320.3	320.4	320.6	320.7	321.0				

Regression Analysis

- Discharges estimated from regional equations provided in USGS SIR2006-5112 – Magnitude and Frequency of Floods in New York
- Equations developed based on five basin characteristic variables
 - Drainage Area
 - Mean Annual Precipitation
 - Lag Factor
 - Forested Area
 - Storage
- Flow Changes Locations
 - Upstream and Downstream of all reaches
 - Initially targeted 20% change in discharge
- Watershed boundaries and characteristics produced using StreamStats online Batch Processing Tool

Regression Analysis

Regression Equations New York Region 1

New York Region 1 Regression Equations

$$Q_{10} = 2310 \ (A)^{0.968} \ (ST+1)^{-0.184} \ (P)^{1.241} \ (LAG+1)^{-0.482} \ (FOR+80)^{-1.549} \eqno(4.1)^{-0.184} \ (P)^{-0.184} \ (P)$$

$$Q_{25} = 4580 \ (A)^{0.965} \ (ST+1)^{-0.192} \ (P)^{1.167} \ (LAG+1)^{-0.500} \ (FOR+80)^{-1.582} \tag{4.2}$$

$$Q_{50} = 7030 \ (A)^{0.963} \ (ST+1)^{-0.197} \ (P)^{1.131} \ (LAG+1)^{-0.511} \ (FOR+80)^{-1.610} \tag{4.3}$$

$$Q_{100} = 10300 \ (A)^{0.962} \ (ST+1)^{-0.202} \ (P)^{1.106} \ (LAG+1)^{-0.520} \ (FOR+80)^{-1.638} \eqno(4.4)$$

$$Q_{500} = 22000 (A)^{0.959} (ST + 1)^{-0.210} (P)^{1.067} (LAG + 1)^{-0.539} (FOR + 80)^{-1.704}$$
(4.5)

Where,

- A is Drainage Area, the area that drains to a point on a stream
- ST is Storage, the percentage of the drainage area that is comprised of lakes, ponds, reservoirs, and wetlands
- P is Precipitation, the mean annual preicpitation
- LAG is the lag factor, the main channel length divided by the square root of the product of the upper half slope of the main channel (plus one) and the lower half slope of the main channel (plus one)
- FOR is Forest, the percentage of the drainage area covered by forest

Regression Analysis Watershed in Vermont

In cases where watersheds overlapped with areas of Vermont, discharges were calculated using the Vermont Regression Equations (Olson & Veileux, 2014)

 $Q_{10} = 0.199(A)^{0.875}(W)^{-0.280}(P)^{1.685}$ $Q_{25} = 0.219(A)^{0.866}(W)^{-0.286}(P)^{1.740}$ $Q_{50} = 0.237(A)^{0.860}(W)^{-0.291}(P)^{1.774}$ $Q_{100} = 0.251(A)^{0.854}(W)^{-0.297}(P)^{1.809}$ $Q_{500} = 0.289(A)^{0.844}(W)^{-0.309}(P)^{1.879}$

(4.6)	Where,	
(4.7)	A	is Drainage Area
(4.8)	W	is Storage
(4.9)	Ρ	is Precipitation
.10)		

A final, weighted average discharge was then calculated based on the ratio of the total drainage area within New York or Vermont.

(4

Regression Analysis Ungaged Site Along a Gaged Stream

At points along a stream with an existing USGS stream gage, regression results were weighted with the results of the Log-Pearson Type III analysis performed for that gage to determine a final weighted discharge.

3. If the ungaged site for which flood-frequency estimates are needed is on a gaged stream, and if the site's drainage area is between 50 and 150 percent of the drainage area of the stream at the gage, the weighted estimate for the ungaged site can be computed by the following equation (Ries and Crouse, 2002):

$$Q_{T(U)w} = \frac{2\Delta A}{A_g} Q_{T(U)r} + \left(1 - \frac{2\Delta A}{A_g}\right) Q_{T(U)g} \quad , \tag{4}$$

where

 $Q_{T(U)w}$ is the weighted estimate of discharge Q_T for recurrence interval T at the ungaged site, is the absolute value of the difference between the drainage areas of the streamflow-gaging station, (A_g) and the ungaged site, ΔA $(A_u), |A_g - A_u|,$

 $Q_{T(U)r}$ is the peak-flow estimate for recurrence interval T at the ungaged site, derived from the applicable regional regression equation (table 1),

and

 $Q_{T(U)g}$

is the peak-flow estimate for recurrence interval *T* at the ungaged site, derived from the weighted estimate of peak discharge at the streamflow-gaging station, $Q_{T(w)}$ (see method for gaged sites), by adjusting for the effect of the difference in drainage area between the streamflow-gaging station and the ungaged site.

 $Q_{T(U)g}$ is computed as:

 $Q_{T(U)g} = \left(\frac{A_u}{A_g}\right)^b \cdot Q_{T(w)} \quad , \tag{5}$

where

depending on the hydrologic region and the recurrence interval T, b is the exponent from the appropriate drainage-area-only equation (table 3).

The weighting procedure is only applicable when the ratio of drainage areas between the ungaged location and the stream gage site is between 0.5 and 1.5.

Rainfall Runoff Modeling

- Software Program: HEC-HMS 4.3
- Topography:
 - LiDAR Digital Elevation Models (DEM)
 - 10m resolution used for watershed delineation
 - 1 and 2m resolution used for flow path delineations, length and slope calculations
- Rainfall:
 - NOAA Atlas 14
- Loss Methodology:
 - SCS Curve Number, Antecedent Moisture Condition = 2
- Hydrograph Methodology: SCS Unit Hydrograph
 - Standard Peak Rate Factor (484)
 - Lag Time (60% of Time of Concentration)
- Channel Routing:
 - Muskingum-Cunge using 8-point cross-sections
- I-minute time step for hydrographs

Rainfall-Runoff Modeling SCS Curve Numbers

FEMA

- Runoff = Rainfall initial abstractions infiltration
- Function of empirical parameter: Curve Number (CN)
- NRCS Soil Data Soils Survey Geographic Database (SSURGO)
- USGS Landuse Data National Land Cover Dataset (NLCD)

Rainfall-Runoff Modeling Time of Concentration (Tc) and Lag Time

- Tc = time for runoff to travel from hydraulically distant point to the outlet of a basin or sub-basin
- Longest flow paths developed from project DEM
- Flow paths split into different types
 - Sheet flow maximum = 100 ft
 - Shallow concentrated flow: from end of sheet flow segment to visual open channel or known storm sewer
 - Channel flow: begins at end of shallow concentrated flow segment and ends at sub-basin outlet
 - Pipe flow
- Lag times = 60% of Tc

Rainfall-Runoff Modeling Reach Routing

- Account for flow attenuation and travel time of flood waves
- Individual sub-basin hydrographs routed downstream along the channels
- Eight point cross-sections capture channel and overbank
- Length, elevations, and slope determined from DEM
- Channel and overbank Manning's n values determined from imagery

Rainfall-Runoff Modeling Frequency Storm Rainfall Data

Temporal Distribution for Northeastern Region 1

1st Quartile

- 50th Percentile Occurrence
- Precipitation Depths from NOAA Atlas 14 Gridded Rainfall Files

Table A.5.1. Total numbe	er of precipitation cases	s and number (an	nd percent) of c	cases in each	quartile for
select	ed durations for Interio	or region (1) and	Coastal regio	n (2).	

Duration	Region	All	First quartile	Second quartile	Third quartile	Fourth quartile
6 1	1	4138	1355 (33%)	1188 (28%)	1063 (26%)	532 (13%)
o-nour	2	2308	451 (20%)	645 (28%)	790 (34%)	422 (18%)
12 h	1	4303	1313 (30%)	1107 (26%)	1190 (28%)	693 (16%)
12-nour	2	2425	449 (19%)	682 (28%)	773 (32%)	521 (21%)
24 1	1	3943	1240 (32%)	1107 (28%)	909 (23%)	687 (17%)
24-nour	2	2229	515 (23%)	679 (31%)	648 (29%)	387 (17%)
06 1	1	3771	1588 (42%)	766 (20%)	739 (20%)	678 (18%)
90-hour	2	2163	998 (46%)	463 (21%)	325 (15%)	377 (18%)

Rainfall Depths for Frequency Storms									
	AREA 0.2% 1% 2% 4%					10%			
	Acres	24 Hour							
Lake Champlain Canal	33,103	7.00	5.54	4.99	4.45	3.75			
Hadlock Pond	12,382	7.07	5.63	5.07	4.54	3.83			
Mettawee River	37,569	7.35	5.77	5.18	4.62	3.87			
Halfway Creek	32,327	7.02	5.59	5.03	4.50	3.80			
TOTAL / AVERAGE	115,381	7.14	5.64	5.07	4.52	3.81			

Rainfall-Runoff Modeling Reach Routing

- Account for flow attenuation and travel time of flood waves
- Individual sub-basin hydrographs routed downstream along the channels
- Eight point cross-sections capture channel and overbank
- Length, elevations, and slope determined from DEM
- Channel and overbank Manning's n values determined from imagery

Rainfall-Runoff Modeling Watersheds

Mettawee River

- Mettawee River
- Castle Creek & Tributaries
- Indian River & Tributaries

Fort Ann

- Hadlock Pond
- Copeland Pond
- Lake Nebo
- Lakes Pond

Halfway Creek

- Halfway Creek
- Bishop Brook & Tributaries
- Unnamed Stream 5 & Tributaries

Champlain Canal

- Champlain Canal & Tributaries
- Wood Creek
- Wood Creek West
- Wood Creek East
- Unnamed Stream 18 & Tributary
- Mud Brook
- Big Creek

Increasing Resilience Together

Rainfall-Runoff Modeling Discharge Verification

- USGS 4280450 (Mettawee River) is the only active stream gage within the rainfall-runoff modeled watersheds
 - Curve Numbers were decreased by 11 points within the Mettawee River model to match
 gage flow for 1%-annual-chance-event

	Pre- Verification	Post- Verification	USGS 4280450	Post- Verification Difference (%)
1% annual chance Q (cfs)	24,910	15,578	15,984	2.6%

Global Adjustment

- Consistent with the Mettawee Pre-Verification discharges, results from other HEC-HMS models were considerably higher than Regression Equations, ranging from 40-60%
 - 31% is the standard error for the 1%-annual-chance discharge for NY Region 1 Regression Equations
- Curve Numbers for all models were therefore decreased by 11 points to follow Mettawee River verification and match upper limit of Regression results

Rainfall-Runoff Modeling Mettawee River

- Flows from SE to NW and outlets into Champlain Canal south of Town of Whitehall
- Drainage Area = 210 square miles
 - Approximately 65% in Vermont
- 13 Streams
- ► 48 Miles

COMPARISON TO REGRESSION RESULTS – SELECT LOCATIONS								
	Drainage Area (mi²)	10%	4%	2%	1%	0.2%		
Average Difference (%)	2.2%	25.2%	23.5%	28.8%	35.7%	60.5%		

FEMA

Rainfall-Runoff Modeling Fort Ann

Drainage Area = 14 square miles

- Lakes Pond (3.4 square miles) outlets north into Lake Champlain watershed
- Hadlock Pond and Copeland Pond outlet south into Mettawee River watershed
- 14 Streams, 4 Lakes/Ponds
- ▶ 14.5 Miles

COMPARISON TO REGRESSION RESULTS - SELECT LOCATIONSDrainage
Area (mi²)10%4%2%1%0.2%Average
Difference (%)2.6%31.9%27.9%28.5%28.2%33.6%

Rainfall-Runoff Modeling Halfway Creek

- Flows W to E and outlets into Champlain Canal north of the Village of Fort Ann
- Drainage Area = 88 square miles
 - Approximately 40% in Warren County
 - Includes Ft. Ann Watershed
- 30 Streams
- ▶ 57 Miles

	Drainage Area (mi²)	10%	4%	2%	1%	0.2%			
Average Difference (%)	7.5%	33.5%	21.1%	15.7%	16.4%	29.1%			

COMPARISON TO REGRESSION RESULTS – SELECT LOCATIONS

Rainfall-Runoff Modeling Champlain Canal

- Champlain Canal is a series of constructed locks and dams
- Hydrologic Analysis consisted of developing hydrographs and determining outlet locations
- Discharges from sub-watersheds and direct tributary areas will be routed through canal system using un-steady hydraulic analysis

Rainfall-Runoff Modeling Champlain Canal

Flow Location	Drainage Area	1% Annual Chance (cfs)	Flow Location	Drainage Area (mi ²)	1% Annual Chance (cfs)
BC-17	34.13	5215.8	CC-10	1.14	232.2
CC-1	18.37	2827.1	HWC	0.00*	6027.4
CC-2	4 25	378.5	MB-1	10.64	1452.5
CC-3	2 32	311.7	MTWR	0.00*	17885.5
CC-4	0.63	109.2	UT18-3	6.77	1083.7
CC 5	7.15	097.6	WC-7	14.01	2309.6
00.0	1.15	907.0	WCE-2	1.56	248.4
00.7	10.77	1320.3	WCW-3	5.78	889.2
00-7	1.76	146.3	WCW-4	5.02	805.8
CC-8	0.33	88.9	W/INL2	10.88	3021.6
CC-9	1.34	243.9	VVIIN-5	19.00	5021.0

* Hydrograph input directly from other HEC-HMS models

COMPARISON TO REGRESSION RESULTS – SELECT LOCATIONS								
Drainage Area (mi ²) 10% 4% 2% 1% 0.2%								
Average Difference (%)	4.2%	15.3%	12.9%	14.6%	18.5%	27.8%		

Rainfall-Runoff Modeling Comparison to Effective Discharges

Rainfall-Runoff Modeling Comparison to Effective Discharges

Detailed Studies			Effective		Calculated		
FIS Report	Date	Flooding Source and Location	Location ID	Drainage Area (mi ²)	1% Annual Chance	Drainage Area (mi ²)	1% Annual Chance
Village of January 2,	Owl Kill						
		Downstream corporate limits	1	17.9	1,725	17.5	1,891
	Upstream of confluence with Cambridge Creek	2	9.9	920	9.5	1,255	
	January 2,	Upstream of Tributary approx. 750' upstream of Spring St.	3	8.7	820	8.4	815
Cambridge	2008	Cambridge Creek					
		Upstream of confluence with Owl Kill	4	7.6	1,000	7.5	1,137
		White Creek					
		Downstream corporate limits	5	19.4	2,400	19.2	2,931

Rainfall-Runoff Modeling Comparison to Effective Discharges

Detailed Studies			Effective		Calculated		
FIS Report	Date	Flooding Source and Location	Locatio n ID	Drainage Area (mi ²)	1% Annual Chance	Drainage Area (mi ²)	1% Annual Chance
		Tributary A					
		Confluence with Champlain Canal	9	1.33	844	1.3	304
		Upstream of confluence with Tributary B	10	0.569	393	0.6	164
Town of Fort	June 15, 1982	Tributary B					
Edward		Confluence with Tributary A	11	0.734	508	0.7	148
		Upstream of confluence with Tributary C	12	0.527	394	0.5	101
		Tributary C					
		Confluence with Tributary B	13	0.197	159	0.2	111

Rainfall-Runoff Modeling Comparison to Effective Discharges/Elevations

Detailed Studies				Effective		Calculated	
FIS Report	Date	Flooding Source and Location	Location ID	Drainage Area (mi ²)	1% Annual Chance	Drainage Area (mi ²)	1% Annual Chance
Town of Easton	November 20, 1991						
Town of Greenwich	March 16, 1992						
Village of Greenwich	May 4, 2000	JSGS Battenville	Q	304.0	20.400	206.0	24 607
Town of Jackson	n March 16, 1992 gaging station 8	394.0	20,400	20,400 396.0	21,607		

Detailed Studies			Stillwater Elevations (NAVD 88)				
FIS Report	Date	Flooding Source and Location	10% Annual Chance	2% Annual Chance	1% Annual Chance	0.2% Annual Chance	
Town of Easton	November 20, 1991	Lake George 320.4			320.6		
Town of Greenwich	March 16, 1992		-	-	320.0	-	
Washington County	October 1, 2019*		320.4	320.6	320.7	320.8	

Direct Volume Calculation

Direct Runoff Calculation

- Computation of runoff depth and volume based on TR-55 methodology
- Curve Numbers determined using same approach as Rainfall-Runoff Modeling

$$Q = \frac{\left(P - I_a\right)^2}{\left(P - I_a\right) + S}$$
 [eq. 2-1]

where

- Q = runoff (in)
- P = rainfall (in)
- S = potential maximum retention after runoff begins (in) and
- $I_a = initial abstraction (in)$

 $I_a = 0.2S$

Direct Volume Calculation Methodology

Ponding Volume

- Stage-Storage Curves for each lake/pond developed using Surface Volume Tool in ArcGIS
- Assumed no outlet from pond other than overtopping

Ponding Depth/Elevation

- Approximate stillwater elevations determined for the 10%, 4%, 2%, 1% and 0.2% annual chance events
- Elevations determined by comparing direct runoff volume to available storage and interpolating elevation

🔨 Surface Volume			– 🗆 X
Input Surface			Surface Volume
 Output Text File (optional)			Calculates the area and volume of the region between a surface and a reference plane.
Reference Plane (optional) ABOVE		~	
Plane Height (optional)			
Z Factor (optional)		1	
Pyramid Level Resolution (optional)		~	
		ĭ	`
C	OK Cancel Environmen	nts << Hide Help	Tool Help

Direct Volume Calculation Results

	Elevations (feet NAVD88)							
Flooding Source	10% Annual Chance	4% Annual Chance	2% Annual Chance	1% Annual Chance	0.2% Annual Chance			
Beaver Brook	650.2	650.2	650.2	650.2	650.2			
Big Creek Trib 2	685.0	685.0	685.0	685.0	685.0			
Black Creek	743.6	743.6	743.6	743.6	743.6			
Bumps Pond	2,011.5	2,011.9	2,012.3	2,012.7	2,012.7			
Dead Creek Trib 1	987.5	987.5	987.5	987.5	987.5			
Dead Creek Trib 1.1	992.4	992.8	993.0	993.0	993.0			
Dead Lake	536.0	536.2	536.4	536.5	537.1			
Dunhams Bay	620.7	620.7	620.7	620.7	620.7			
Fly Creek Trib 2.1	697.7	697.8	697.9	697.9	698.0			
Hill Pond	584.0	584.0	584.0	584.0	584.0			
Kidney Creek	474.5	474.5	474.5	474.5	474.5			
Mill Brook Trib	650.2	650.2	650.2	650.2	650.2			

Direct Volume Calculation Results

	Elevations (feet NAVD88)							
Flooding Source	10% Annual Chance	4% Annual Chance	2% Annual Chance	1% Annual Chance	0.2% Annual Chance			
Moses Kill Trib 1	483.0	483.0	483.0	483.0	483.0			
Pine Lake Trib 1	1,237.0	1,237.0	1,237.0	1,237.0	1,237.0			
Poultney River Trib 5.1	704.5	704.5	704.5	704.5	704.5			
Schoolhouse Lake	532.2	532.8	533.3	533.8	535.1			
Sheltered Lake	1,370.2	1,370.2	1,370.2	1,370.2	1,370.2			
Slocum Creek	431.5	431.5	431.5	431.5	431.5			
Slocum Creek Trib	437.4	437.6	437.6	437.6	437.6			
Spectacle Pond	1,646.9	1,646.9	1,646.9	1,646.9	1,646.9			
Unnamed Stream 14	629.0	629.0	629.0	629.0	629.0			
Unnamed Stream 6	463.8	463.9	464.1	464.2	464.7			
Unnamed Stream 8	454.5	454.5	454.5	454.5	454.5			

- Field Reconnaissance
- Hydraulics Modeling and Report
- Hydraulics Submittal
- Hydraulics Public Webinar
- Dam Breach Analysis
- Mapping

Schedule

ΜΑΡ

C Z

Increasing Resilience Together

R

Contacts

- FEMA Project Monitor
 - Robert Schaefer
 - 212-680-8808
 - Robert.Schaefer@fema.dhs.gov

FEMA Outreach Coordinator

- Stephanie Gootman
- 202-802-3137
- stephanie.gootman@fema.dhs.gov

STARR II Project Manager

- Tiffany Coleman
- 859-422-3024
- Tiffany.coleman@Stantec.com

STARR II Regional Support Center

- Curtis Smith
- 646-490-3929
- curtis.smith@stantec.com

Thank You!

- Questions?
- Comments?

