

Flood Risk Project

Yates County, New York, Hydrology Meeting

September 30, 2019

Presentation Agenda

- Project Recap
- Project Scope
- Hydrologic Analysis Task Scope
- Hydrologic Analysis & Results
- Schedule

Project Recap

- Discovery 2015
- Seneca Watershed Study 2018
- This Study
 - Continuation of 2018 watershed study
 - Kickoff meeting: March 7, 2019
 - Engineering models notification to communities: April 1, 2019
 - Hydrologic analysis: April 2019 Present
 - Field survey: April 2019 September 2019

Project Scope

- First time digital countywide maps
- Additional flooding sources studied
 - 5.1 miles Detailed (AE) streams
 - 5.4 miles Approximate (A) streams
- Includes 211 miles of 2018 Seneca Watershed study
 - 41.9 miles Detailed (AE)
 - 164.0 miles Approximate (A)
 - 5.1 miles Redelineation
- 13 affected communities
- 74 map panels
- Multiple touchpoints

Hydrologic Analysis Task Scope

• 5 Detailed (AE) study flooding sources

- Keuka Lake Outlet -1.8 miles
- Jacobs Brook -1.1 miles
- Kimbell Gully 0.6 miles
- Lincoln Sheet Flow 0.5 miles
- Sucker Brook 1.1 miles
- 9 Approximate (A) streams, totaling 5.4 miles
- Hydrologic analyses
 - Gage analyses Keuka Lake Outlet
 - Rainfall-runoff modeling for other 4 AE streams
 - Regression analyses for all A streams
- Discharges developed: 10%, 4%, 2%, 1% (Base Flood), 1%+, 1%-, 0.2%

Hydrologic Analysis Methods

Typical FEMA methods

- Rainfall runoff analyses
- Statistical gage analyses
- Regression analyses

Rainfall-runoff analyses

- Physical modeling
- USACE HEC-HMS program

Statistical Gage analyses

- Statistical analyses of flow/stage gage data
- USGS PeakFQ program
- Regression analyses

FEMA

- Regional equations published by USGS
- USGS StreamStats web application
- Develop inputs for hydraulic analysis

Detailed Studies

- All detailed studies are mostly located in Village of Penn Yan
- Small drainage areas, with exception of Keuka Lake Outlet

Study Stream Name	Study Stream Length Name (mi)		Hydrologic Method Used	
Jacobs Brook	1.10	5.13		
Kimbell Gully	1.79	2.13	Rainfall Runoff	
Sucker Brook	1.10	2.52	Method - HEC-	
Lincoln Sheet Flow	0.64	0.19	HMS	
Keuka Lake Outlet	1.78	187	Bulletin 17C	

Detailed Studies – Rainfall Runoff Modeling

• USACE HEC-HMS 4.3 model applied

Topography:

- 2012 LiDAR Digital Elevation Model (DEM) 2m resolution
- · Used for basin and flow path delineations, length and slope calculations

Rainfall Loss Method:

Soil Conservation Service (SCS) Curve Number (CN)

Runoff Hydrograph Method:

SCS Unit Hydrograph

FEMA

Flood Channel Routing Method:

- Muskingum-Cunge using 8-point cross section
- Flood Frequency Storms: NOAA Atlas 14
- No stream gage available for calibration
- Regression analysis developed for validation

Increasing Resilience Together

Rainfall-Runoff Modeling SCS Curve Numbers

ЕЕМ А

- Runoff = Rainfall initial abstractions infiltration
- Function of empirical parameter: Curve Number (CN)
- NRCS Soil Data Soils Survey Geographic Database (SSURGO)
- USGS Landuse Data National Land Cover Dataset (NLCD)

RiskMAP Increasing Resilience Together

Rainfall-Runoff Modeling Time of Concentration (Tc)/Lag Time

- Tc = time for runoff to travel from hydraulically distant point to the outlet of a basin or sub-basin
- Longest flow paths developed from project DEM
- Flow paths split into different types:
 - Sheet flow maximum = 100 ft
 - Shallow concentrated flow: from end of sheet flow segment to visual open channel
 - Channel flow: begins at end of shallow concentrated flow segment and ends at sub-basin outlet

Lag times = 60% of Tc

• Model values range from 37 minutes to 131 minutes

Rainfall-Runoff Modeling Reach Routing

- Account for flow attenuation and travel time of flood waves
- Individual sub-basin hydrographs routed downstream along the channels
- Eight point cross-sections capture channel and overbank
- Length, elevations, and slope determined from DEM
- Channel and overbank Manning's n values determined from imagery

Rainfall-Runoff Modeling Summary of Model Parameters

Sub- Basin	Drainage Area (mi²)	Curve Number	Percent Impervious	Lag Time (Mins)
W6470	4.5	50.5	2.0%	130.7
W6800	2.0	52.3	4.1%	111.8
W6760	0.4	61.0	0.2%	42.7
W6890	0.5	73.7	5.4%	67.1
W6770	0.3	70.4	0.0%	36.9
W3570	0.2	60.8	0.0%	45.9
W6920	2.1	61.5	2.3%	117.5

Rainfall-Runoff Modeling Frequency Storm Rainfall Data

- NOAA Atlas 14-point precipitation estimates
- Model-wide estimates:
 - 24-hour rainfall modeled
 - 100-year rainfall: 5.29 inches
- Same chart used for other frequencies
- "Frequency storm" distribution type used in HEC-HMS

PDS	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹									
Duration				Average	recurrence	interval (yea	ars)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.287	0.350	0.453	0.538	0.656	0.744	0.838	0.948	1.11	1.25
	(0.226-0.353)	(0.275-0.431)	(0.355-0.559)	(0.420-0.668)	(0.495-0.852)	(0.550-0.987)	(0.602-1.16)	(0.640-1.33)	(0.720-1.61)	(0.788-1.84
10-min	0.406	0.496	0.642	0.763	0.929	1.05	1.19	1.34	1.57	1.77
	(0.320-0.499)	(0.390-0.610)	(0.503-0.792)	(0.595-0.947)	(0.702-1.21)	(0.779-1.40)	(0.853-1.64)	(0.906-1.88)	(1.02-2.28)	(1.12-2.60)
15-min	0.478	0.583	0.755	0.898	1.09	1.24	1.40	1.58	1.85	2.08
	(0.377-0.588)	(0.459-0.718)	(0.592-0.932)	(0.701-1.12)	(0.825-1.42)	(0.916-1.65)	(1.00-1.93)	(1.07-2.21)	(1.20-2.68)	(1.31-3.06)
30-min	0.644	0.785	1.02	1.21	1.47	1.67	1.88	2.13	2.49	2.79
	(0.508-0.792)	(0.618-0.967)	(0.797-1.25)	(0.942-1.50)	(1.11-1.91)	(1.23-2.22)	(1.35-2.59)	(1.44-2.98)	(1.61-3.60)	(1.77-4.12)
60-min	0.810	0.988	1.28	1.52	1.85	2.10	2.36	2.67	3.13	3.51
	(0.638-0.996)	(0.778-1.22)	(1.00-1.58)	(1.19-1.89)	(1.40-2.40)	(1.55-2.79)	(1.70-3.26)	(1.80-3.74)	(2.03-4.53)	(2.22-5.18)
2-hr	1.01	1.22	1.56	1.84	2.22	2.50	2.82	3.22	3.86	4.42
	(0.801-1.23)	(0.964-1.49)	(1.23-1.91)	(1.44-2.26)	(1.69-2.88)	(1.87-3.33)	(2.06-3.91)	(2.18-4.47)	(2.51-5.54)	(2.81-6.46)
3-hr	1.14	1.37	1.74	2.04	2.46	2.77	3.11	3.56	4.30	4.96
	(0.909-1.39)	(1.09-1.67)	(1.38-2.12)	(1.61-2.51)	(1.89-3.18)	(2.08-3.67)	(2.29-4.32)	(2.42-4.93)	(2.80-6.14)	(3.16-7.21)
6-hr	1.40	1.66	2.09	2.45	2.94	3.30	3.70	4.23	5.08	5.84
	(1.12-1.69)	(1.33-2.01)	(1.67-2.54)	(1.94-2.99)	(2.27-3.77)	(2.50-4.34)	(2.74-5.09)	(2.88-5.80)	(3.32-7.20)	(3.73-8.41)
12-hr	1.69	2.01	2.52	2.95	3.54	3.98	4.45	5.02	5.90	6.66
	(1.36-2.03)	(1.62-2.41)	(2.03-3.04)	(2.35-3.57)	(2.73-4.48)	(3.01-5.15)	(3.27-5.99)	(3.44-6.83)	(3.88-8.28)	(4.26-9.51)
24-hr	1.99	2.37	2.99	3.50	4.21	4.73	5.29	5.94	6.88	7.66
	(1.62-2.37)	(1.92-2.83)	(2.41-3.58)	(2.81-4.21)	(3.26-5.27)	(3.59-6.05)	(3.88-7.01)	(4.09-7.99)	(4.54-9.56)	(4.92-10.8)
2-day	2.30	2.74	3.47	4.08	4.91	5.53	6.19	6.96	8.08	9.03
	(1.88-2.72)	(2.24-3.25)	(2.82-4.13)	(3.29-4.87)	(3.82-6.11)	(4.21-7.02)	(4.57-8.14)	(4.81-9.28)	(5.35-11.1)	(5.82-12.6)
3-day	2.53	3.01	3.80	4.46	5.36	6.04	6.75	7.59	8.83	9.86
	(2.07-2.98)	(2.47-3.55)	(3.10-4.50)	(3.62-5.30)	(4.19-6.65)	(4.61-7.63)	(5.00-8.85)	(5.26-10.1)	(5.86-12.1)	(6.37-13.7)
4-day	2.72	3.23	4.06	4.76	5.71	6.42	7.17	8.05	9.35	10.4
	(2.24-3.20)	(2.66-3.81)	(3.33-4.80)	(3.87-5.64)	(4.47-7.05)	(4.92-8.08)	(5.32-9.36)	(5.59-10.6)	(6.22-12.7)	(6.75-14.5)
7-day	3.23	3.78	4.68	5.44	6.47	7.24	8.06	9.01	10.4	11.5
	(2.67-3.78)	(3.12-4.43)	(3.86-5.50)	(4.44-6.41)	(5.10-7.93)	(5.57-9.05)	(5.99-10.4)	(6.28-11.8)	(6.93-14.1)	(7.48-15.9)
10-day	3.70 (3.07-4.32)	4.29 (3.56-5.00)	5.25 (4.33-6.14)	6.04 (4.95-7.10)	7.13 (5.63-8.70)	7.95 (6.13-9.88)	8.81 (6.55-11.3)	9.79 (6.85-12.8)	11.2 (7.49-15.1)	12.3 (8.03-16.9)
20-day	5.16	5.82	6.91	7.81	9.05	9.99	11.0	12.0	13.4	14.5
	(4.31-5.97)	(4.86-6.74)	(5.74-8.02)	(6.44-9.11)	(7.18-10.9)	(7.72-12.3)	(8.14-13.8)	(8.43-15.5)	(9.00-17.9)	(9.46-19.7)
30-day	6.38	7.10	8.27	9.24	10.6	11.6	12.6	13.7	15.1	16.1
	(5.35-7.36)	(5.95-8.19)	(6.90-9.57)	(7.66-10.7)	(8.42-12.7)	(8.99-14.1)	(9.39-15.8)	(9.67-17.6)	(10.2-20.0)	(10.5-21.7)
45-day	7.92	8.69	9.95	11.0	12.4	13.6	14.6	15.7	17.0	17.9
	(6.67-9.09)	(7.31-9.98)	(8.33-11.5)	(9.15-12.7)	(9.92-14.8)	(10.5-16.4)	(10.9-18.1)	(11.1-20.0)	(11.5-22.4)	(11.7-24.0)
60-day	9.22	10.0	11.3	12.4	13.9	15.1	16.3	17.3	18.5	19.3
	(7.78-10.5)	(8.45-11.5)	(9.52-13.0)	(10.4-14.3)	(11.1-16.5)	(11.8-18.2)	(12.1-19.9)	(12.3-22.0)	(12.5-24.2)	(12.7-25.8)

Detailed Studies – Gage Analysis

- Only Keuka Lake Outlet has a gage available:
 - USGS Gage 04232482
 - Period of record 1965 to 2018
 - DA: 207 mi² at gage vs 187 mi² at study limit
- Recently published Bulletin 17C, codified in USGS PeakFQ 7.2 program
- Seneca watershed study used Bulletin 17B using 1966 to 2015 records
- PeakFQ results are slightly lower with 17C analysis than with 17B

Detailed Studies – Recommended Discharges

			PEAK DISCHARGES (cfs)						
FLOODING SOURCE AND LOCATION	DRAINAGE AREA (mi²)	10- YEAR	25- YEAR	50- YEAR	100- YEAR	100- YEAR PLUS	100- YEAR MINUS	500- YEAR	
Jacobs Brook									
At mouth	4.90	281	488	668	883	1,432	600	1,649	
Kimbell Gully									
At mouth	2.10	189	311	415	537	816	384	953	
Sucker Brook									
At mouth	2.50	164	277	378	499	713	376	933	
Lincoln Sheet Flow	v								
At mouth	0.19	23	42	59	79	141	50	146	
Keuka Lake Outlet									
At Main Street	187.00	2,526	3,134	3,588	4,043	5,778	3,680	5,114	

Regression Analysis

- USGS New York regression equation: SIR 2006-5112
- Study area falls within USGS NY regression Region 6
- USGS StreamStats web application employed
- Primary method for A streams,
- Validation of HMS discharges for AE streams

Summary of Regression Equations

USGS NYS Hydrologic Region 6

Q 10	23.4 (A) 0.810 (ST+0.5) -0.218 (RUNF) 0.600 (EL12+1) 0.133 (SR) 0.268
Q 25	32.1 (A) 0.815 (ST+0.5) -0.200 (RUNF) 0.555 (EL12+1) 0.148 (SR) 0.290
Q 50	39.0 (A) 0.819 (ST+0.5) -0.188 (RUNF) 0.528 (EL12+1) 0.157 (SR) 0.305
Q 100	46.0 (A) 0.823 (ST+0.5) -0.177 (RUNF) 0.505 (EL12+1) 0.166 (SR) 0.318
Q 200	53.2 (A) 0.828 (ST+0.5) -0.167 (RUNF) 0.487 (EL12+1) 0.173 (SR) 0.330
Q 500	62.7 (A) 0.834 (ST+0.5) -0.155 (RUNF) 0.466 (EL12+1) 0.183 (SR) 0.345

A: Drainage area in square miles

ST: Basin storage in % of drainage area

RUNF: Mean annual runoff in inches

EL12: Percentage of drainage basin at or greater than 1,200 ft above sea level

SR: Slope ratio—ratio of main-channel slope to basin slope within drainage basin

Approximate Studies – Recommended Discharges

Flooding Source	Drainage Area (mi²)	Q100 (CFS)
Big Stream Trib1	0.11	43.2
Fivemile Creek	9.11	2,140
Fivemile Creek Outlet	9.26	2,170
Flint Creek UT2	0.82	329
Kashong Creek	2.06	158
Kashong Creek Trib 1	0.26	25.8
Kashong Creek UT 1	4.53	445
NP	0.43	62.5
Segar Gully	4.06	1,560

FEMA

Detailed Studies – Comparison of Results

Flooding Source	Location	FIS 100-Year		Regressio	n 100-Year	This Study 100-Year	
		DA (mi²)	Q (cfs)	DA (mi²)	Q (cfs)	DA (mi²)	Q (cfs)
Jacobs Brook	At mouth	5.2	1,110	5.4	491	4.9	883
Kimbell Gully	At mouth	2.1	630	2.2	298	2.1	537
Sucker Brook	At mouth	2.7	1,020	2.2	475	2.5	499
Lincoln Sheet Flow	At mouth	-	-	0.25	53.4	0.19	79

Comparison of Results

Comparison of Flows Vs Drainage Area for Detailed Streams (DA < 6 mi²)

Comparison of Results

Gage analyses (Keuka Lake Outlet)

- Effective flood study: Flows increase from 1,800 cfs to 4,043 cfs
- 2018 Seneca Watershed study: Flows decrease due to:
 - Added years of peak annual flow / Method change from Bulletin 17B to 17C

Rainfall-runoff modeling (4 AE streams)

Flows larger than regression analysis

Regression analyses (approximate streams)

• Same method as 2018 watershed study, so no difference in results

General results

- Discharges lower than effective FIS
- Detailed and approximate results agree with general range of regression equation results

Next Steps

- Field reconnaissance
- Hydraulic analysis
 - Hydraulic modeling/report/submittal
 - Hydraulic analysis webinar
- Flood Risk Review meeting
- Dam breach analysis
- Mapping

Schedule

Risk MAP

Increasing Resilience Together

Contacts

- FEMA Project Monitor
 - Shudipto Rahman
 - 202-702-4273
 - shudipto.rahman@fema.dhs.gov

FEMA Outreach Coordinator

- Stephanie Gootman
- 202-802-3137
- stephanie.gootman@fema.dhs.gov

STARR II Project Manager

- Srikanth Koka
- 703-849-0584
- skoka@dewberry.com

STARR II Regional Support Center

- Curtis Smith
- 646-490-3929
- curtis.smith@stantec.com

Questions? Comments?

Thank you!

