

Flood Risk Project

Ontario County, New York Project Kick Off Meeting

March 4 & 5, 2019

Please Introduce Yourself

- Name
- Role
- Organization

Also, what do you hope to gain from our meeting today?

As partners with FEMA, it's important we create dialogue about your needs for flood risk information.

Please sign in!

Today's Goals

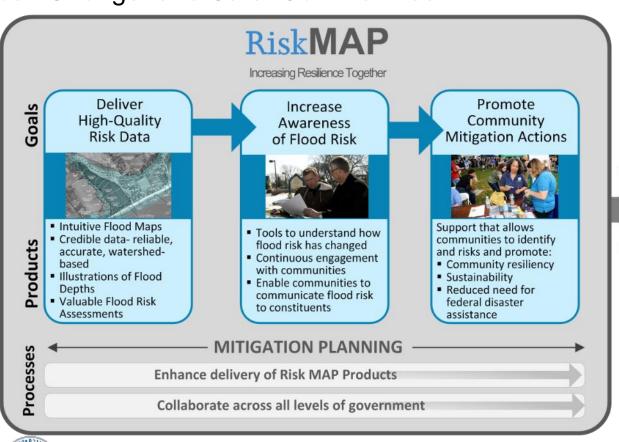
1

The value of updated flood maps for your community

2

Recap of Flood Risk Study history, including Discovery and Seneca Watershed study 3

Review countywide study scope, products and outreach process



FEMA Mitigation Division

Risk Analysis Branch

Goal: Stronger and Safer Communities

Reduce Risk to Lives and Property

Save Money!

The Value of Updated Flood Maps for Local Communities

Flood Maps Guide Progress By:

Identifying and Assessing Flood Risk

Flood Insurance Rates

Determining Local Land Use

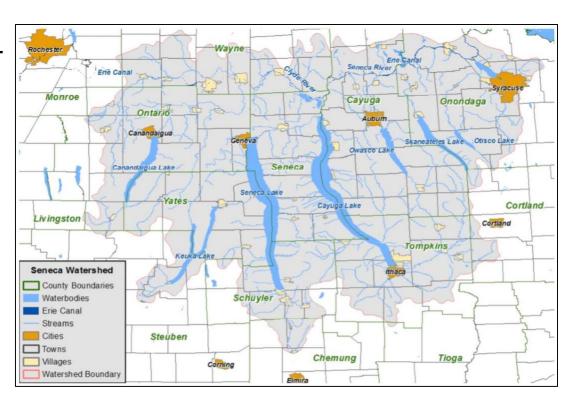
Informing Engineers and Developers

Equipping Emergency Managers

Why Update Flood Maps?

NFIP Policies	NFIP Claims (since 1978)	Total Insurance Coverage	Insurance Claims Paid (since 1978)	Hazard Mitigation Plan
418	296	\$89,850,700	\$4,186426	Completed, 2018; Waiting on adoption (26 Municipalities)

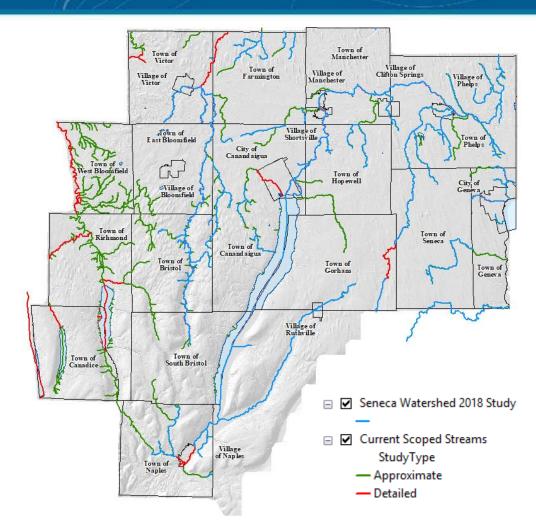
^{*} Source: FEMA Community Information System, dated February 2019



How did we get here? Review past activities

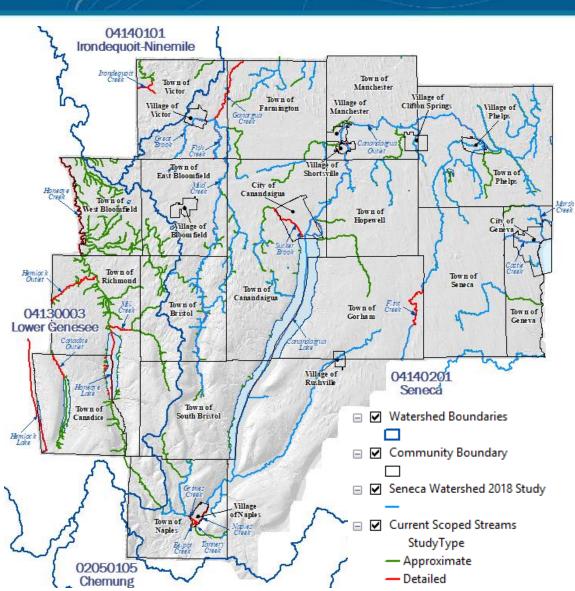
Discovery/Post-Discovery Progress Recap

- Meetings held in May 2014
 - In Hopewell on May 14, 2014
- Discovery project completed in 2015
- FEMA reviewed community input to determine priorities
- Town of Victor identified flooding during May 2014

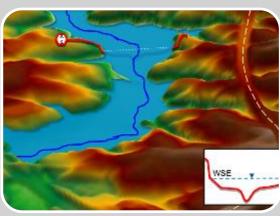


Seneca Watershed Study Project Recap

- Flood hazard analyses completed in Feb, 2018
- 282 stream miles scoped in Ontario
 - 107 miles Detailed
 - 166 miles Approximate
 - 8.3 miles Redelineation
- Flood Risk Review meeting conducted in April, 2018
- Work map products shared with the communities


What is being studied now? Discuss scope of new study

Ontario County, Countywide Flood Risk Study Scope


- First time digital countywide maps
- Additional flooding sources analyzed
 - 41.5 miles Detailed (AE) streams
 - 187 miles Approximate (A) streams
 - 12 miles Lake Gage Analysis
- Includes Seneca Watershed study
- 29 affected communities
- 134 map panels
- Multiple touchpoints

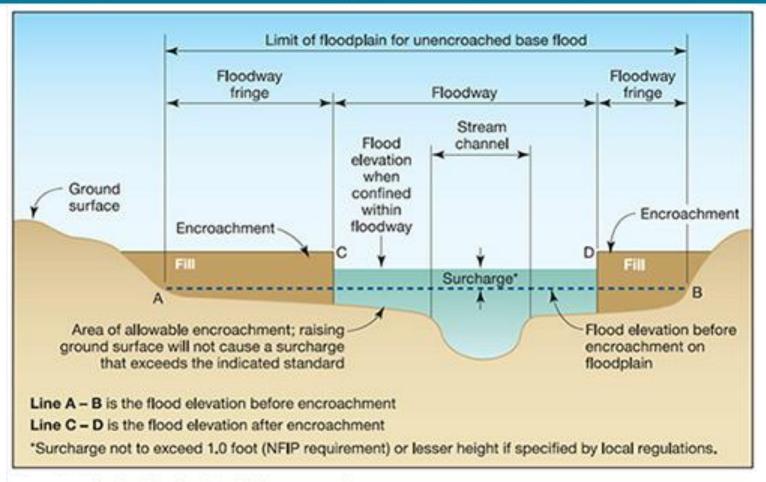
Flood Hazard Analysis

Hydrology

Volume of water?

Peak Flows?

When will storm water or runoff make it to the stream?

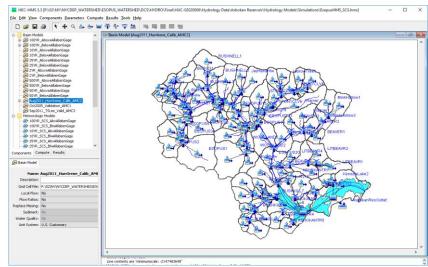

Hydraulics

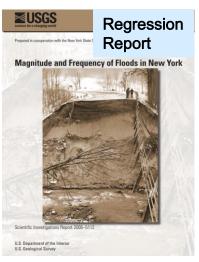
Will the stream in question be able to convey all storm water or runoff that arrives?

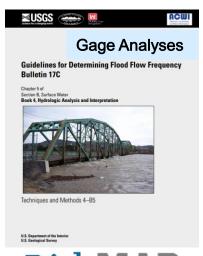
Floodplain Mapping

What areas of a community will be inundated based on engineering analysis?

Detailed Riverine Mapping


Typical riverine floodplain cross section



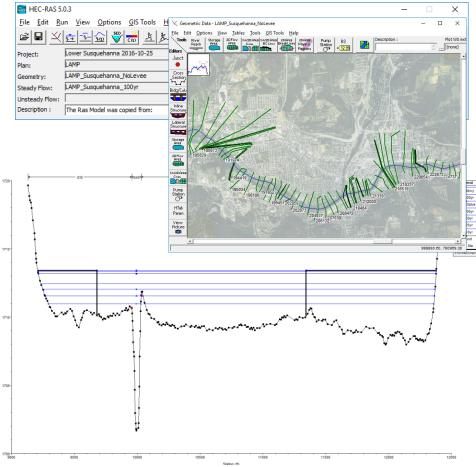


Hydrologic Analysis

- Typical Methods FEMA utilizes
 - Statistical Gage Analyses
 - Regression Analyses
 - Rainfall Runoff Modeling
- Gage/Regression are based on availability stream gage data
- Rainfall-Runoff physical modeling chosen due to limited gage data
 - Using USACE's HEC-HMS Program
- Discharges developed for
 - **10%**, 4%, 2%, 1%, 1%+, 1%-, 0.2%
 - Inputs for hydraulic analyses

Increasing Resilience Together

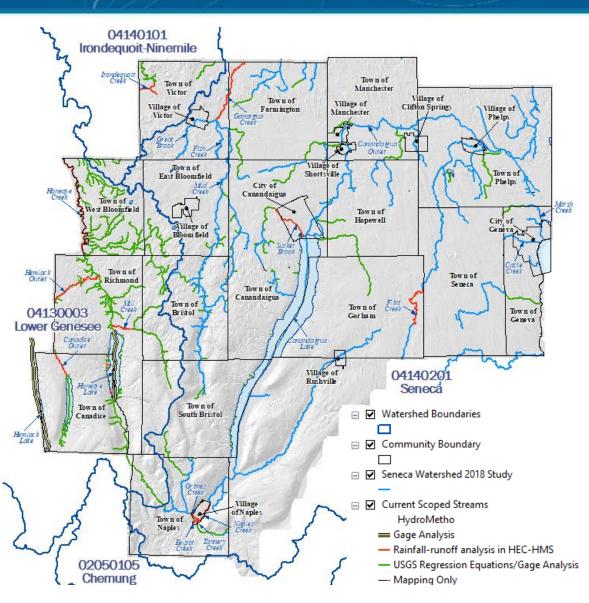
Hydraulic Analysis


Modeling Details

- One Dimensional (1D) Steady State
- USACE's HEC-RAS
- Lake Gage Analysis
 - Hemlock Lake
 - Honeoye Lake

Terrain Data – 2012 LiDAR

- Provides topographic elevation information
- Supplemented by field survey
- Field Survey for Detailed only
- Flood hazard Data
 - Elevations: 10%, 4%, 2%, 1%, 1%+, 1%-, 0.2%
 - Floodplain extents: 1%, 0.2%

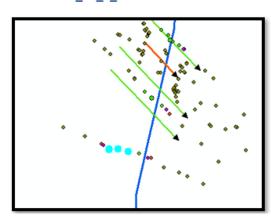


Detailed Streams *Hydrologic Analysis*

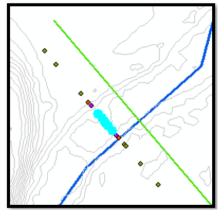
- **▶ 29 Flooding Sources**
- Hydrologic Analyses
 - Stage-Discharge relationship
 - Hemlock Lake
 - Honeoye Lake
 - Rainfall-Runoff modeling
 - 41 miles
 - USACE's HEC-HMS Program
 - Discharges developed for
 - 10%, 4%, 2%, 1%, 1%+, 1%-, 0.2%

Detailed Streams *Hydraulic Analysis / Mapping*

Terrain

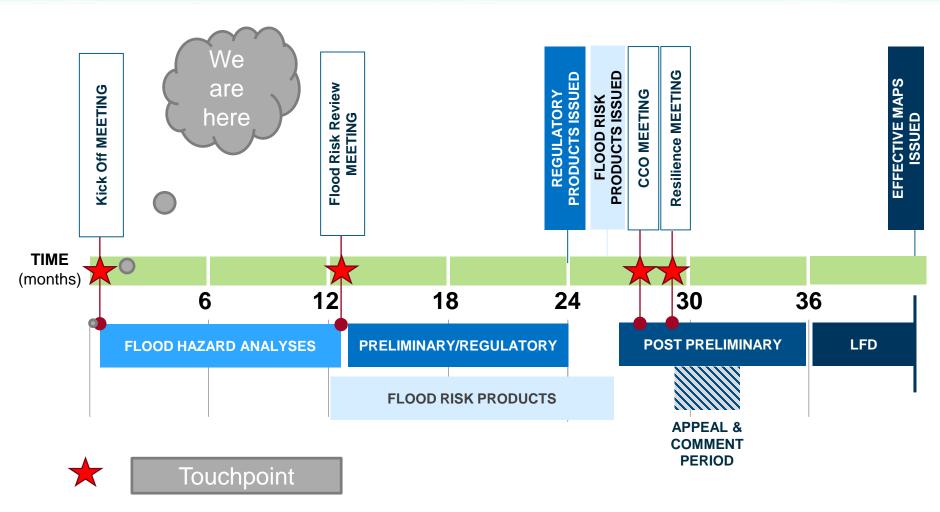

- 2012 FEMA LiDAR Data
- Field Survey for Detailed study Only
 - 41 Bridges; 34 Culverts & 14 (others like Dams, foot bridges)
 - 143 Natural Sections
- Hydraulic Analyses
 - USACE's HEC-RAS Program
 - One-dimensional steady state analyses
 - Water surface profiles developed for
 - 10%, 4%, 2%, 1%, 1%+, 1%-, 0.2%

Mapping


 Floodplain extents for 1% and 0.2%, including floodway

HON_00_0_200 Structure US XS

HON_00_0_600 Natural XS



Where are we now and what is next? Discuss next steps

Overall Flood Risk Project Timeline

Major Study Milestones

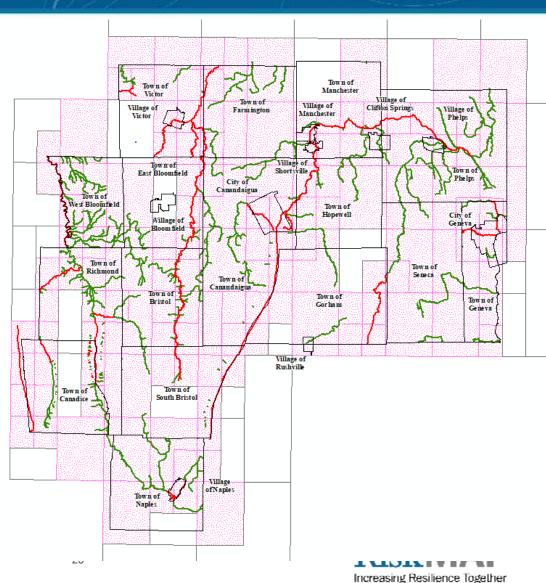
- Data Development (12 months)
 - Terrain Data
 - Field Reconnaissance and Survey
 - Hydrologic Modeling (620 letters)
 - Hydraulic Modeling (620 letters)
 - Floodplain Mapping (workmaps)

- Flood Risk Review Meeting
 - Work map products (14 months)
- Regulatory Product Update (FIRM & FIS)
 - Preliminary issuance (24 months)
- Resilience Meeting
 - Flood risk products (28 months)

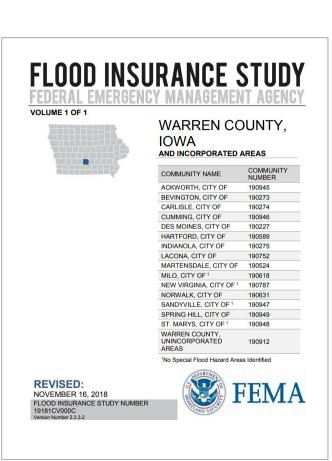
What will communities receive? Regulatory Products

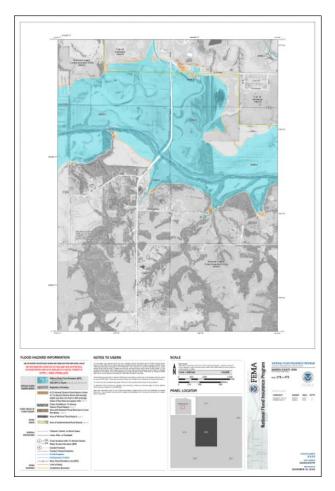
Work Maps

- Draft <u>floodplain mapping</u> shared using work maps
- ► Flood Risk Review meeting provides a review of the new engineering analysis results, allowing communities to:
 - Identify potential updates for Hazard Mitigation Plans
 - Provide insight and input on hydrology and hydraulic results in updated study area
 - Seek local buy-in and review possible use of analysis
 - Identify areas of large changes and potential opportunities for risk reduction
 - Identify risk communications needs and options



Regulatory Products


- Regulatory product development commences after work map comment period
- Seamless countywide mapping produced
 - Seneca Watershed Study
 - This Countywide Study
- Digital Flood Insurance Rate Map (DFIRM) Database
- ▶ 134 FIRM Panels
- Flood Insurance Study (FIS) Report



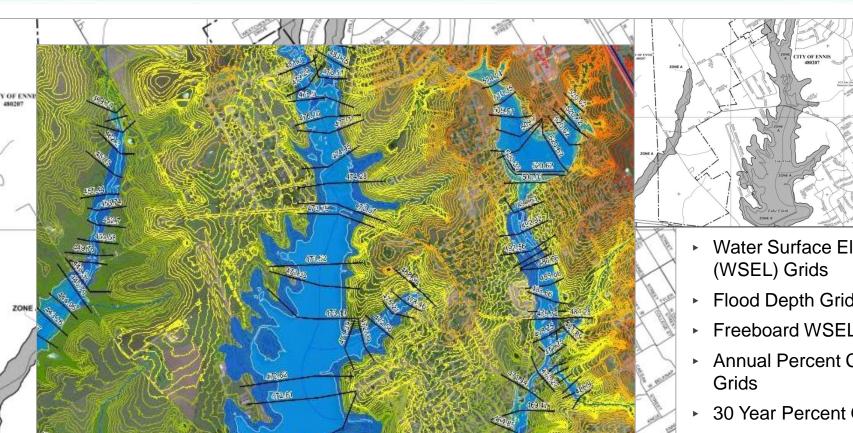
Flood Insurance Rate Map (FIRM) Example

x 19181C_PRELIM_metadata.xml	XML Document				
L_Comm_Info.dbf	dBASE Table				
L_Comm_Revis.dbf	dBASE Table				
L_ManningsN.dbf	dBASE Table				
L_Meetings.dbf	dBASE Table				
L_Mtg_POC.dbf	dBASE Table				
L_Pol_FHBM.dbf	dBASE Table				
L_Source_Cit.dbf	dBASE Table				
L_Summary_Discharges.dbf	dBASE Table				
L_XS_Elev.dbf	dBASE Table				
■L_XS_Struct.dbf	dBASE Table				
S_Base_Index.shp	Shapefile				
──S_BFE.shp	Shapefile				
S_FIRM_Pan.shp	Shapefile				
S_Fld_Haz_Ar.shp	Shapefile				
S_Fld_Haz_Ln.shp	Shapefile				
S_Gen_Struct.shp	Shapefile				
S_Hydro_Reach.shp	Shapefile				
S_Label_Ld.shp	Shapefile				
S_Label_Pt.shp	Shapefile				
S_Nodes.shp	Shapefile				
S_PLSS_Ar.shp	Shapefile				
S_Pol_Ar.shp	Shapefile				
S_Profil_BasIn.shp	Shapefile				
S_Stn_Start.shp	Shapefile				
■ S_Subbasins.shp	Shapefile				
S_Submittal_Info.shp	Shapefile				
S_Trnsport_Ln.shp	Shapefile				
S_Wtr_Ln.shp	Shapefile				
──S_XS.shp	Shapefile				
Study_Info.dbf	dBASE Table				

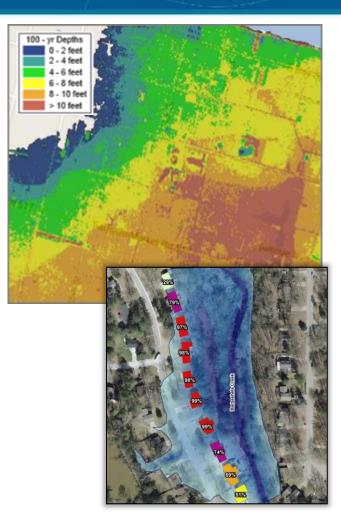
What will communities receive? Flood Risk Products

Knowing the Risk

If a community does not know or understand their risk, they may struggle to....


- Effectively plan use of resources for natural hazards and potential disasters;
- Implement effective hazard mitigation projects;
- Effectively regulate current and future development without increasing risk; and/or
- Effectively communicate about natural hazards to its residents about personal and community mitigation projects that can reduce long-term risk.

Flood Risk Datasets


- Flood Depth Grids
- Freeboard WSEL Grids
- Annual Percent Chance
- 30 Year Percent Grids
- Flood Risk Assessment

Products & Delivery Items: Flood Depth and Analysis Grids

- Flood hazard data backbone for these product development
- Flood Depth and Water Surface Grids
 - Frequencies: 10%, 4%, 2%, 1% and 0.2%
- Water Surface Freeboard Grids
 - +1, +2 & + 3 feet over 1% water surface
- Percentage annual chance of flooding Grid
- Chance of flooding over the average mortgage (30-year) time period grid
- Flood Risk Assessment Analysis (HAZUS)
- Areas of mitigation interest (AOMI)

Flood Risk Database

- Flood risk products are stored and delivered in GIS format - Geodatabase
- Includes spatial & tabular data
- Facilitates infusion into local GIS systems and analyses

			Estimated Potential Losses for Flood Event Scenarios									
	Total Inventory		10% (10-yr)		2% (50-yr)		1% (100-yr)		0.2% (500-yr)		Annualized (\$/yr)	
	Estimated Value	% of Total	Dollar Losses ¹	Loss Ratio ²	Dollar Losses ¹	Loss Ratio ²	Dollar Losses¹	Loss Ratio ²	Dollar Losses ¹	Loss Ratio ²	Dollar Losses ¹	Loss Ratio ²
Residential Building and Contents Losses	\$422,000,000	71%	\$2,500,000	1%	\$3,800,000	1%	\$4,500,000	1%	\$6,200,000	1%	\$300,000	N/A
Commercial Building and Contents Losses	\$122,800,000	21%	\$2,300,000	2%	\$3,700,000	3%	\$4,200,000	3%	\$5,600,000	5%	\$300,000	N/A
Other Building and Contents Losses	\$45,500,000	8%	\$70,000	N/A	\$100,000	N/A	\$200,000	N/A	\$200,000	N/A	\$10,000	N/A
Total Building and Contents Losses ³	\$590,300,000	100%	\$4,800,000	1%	\$7,600,000	1%	\$8,800,000	1%	\$12,100,000	2%	\$700,000	N/A
Business Disruption ⁴	\$0	N/A	\$200,000	N/A	\$200,000	N/A	\$200,000	N/A	\$200,000	N/A	\$20,000	N/A
TOTAL ⁵	\$590,300,000	N/A	\$4,900,000	1%	\$7,700,000	1%	\$8,900,000	2%	\$12,100,000	2%	\$700,000	N/A

Dam Breach Analysis

- Up to 5 Medium/High Hazard
 Dams analyzed
- Engineering analyses developed for FIRM will be leveraged
- Flood Inundation Maps will be developed

Contacts

FEMA

Project Monitor

- Shudipto Rahman
- 202-702-4273
- Shudipto.Rahman@fema.dhs.gov

Outreach Coordinator

- Stephanie Gootman
- 202-802-3137
- Stephanie.Gootman@fema.dhs.gov

STARR II (Technical Partner)

Project Manager

- Sarada Kalikivaya
- 972-588-3141
- Sarada.Kalikivaya@AtkinsGlobal.com

Regional Support Center Lead

- Curtis Smith
- 646-490-3929
- Curtis.Smith@stantec.com

Questions? Comments?

Thank you!

