

Flood Risk Project

Yates County, New York Project Kick Off Meeting

March 7, 2019

Please Introduce Yourself

- Name
- ► Role
- Organization

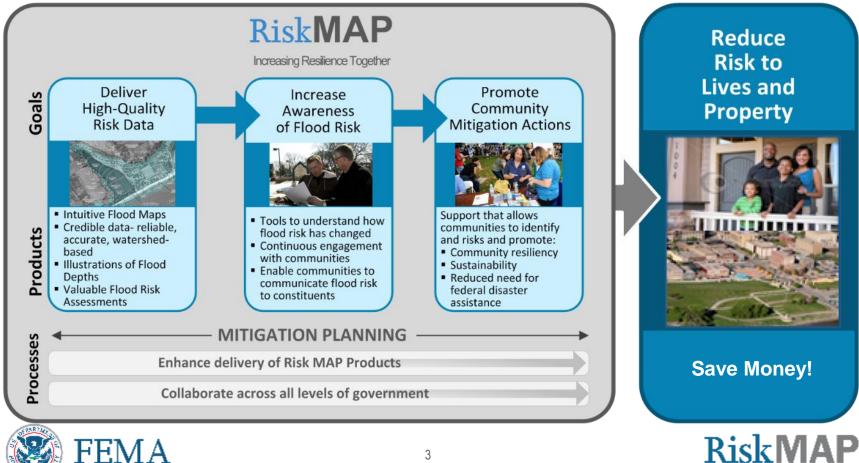
Also, what do you hope to gain from our meeting today? As partners with FEMA, it's important we create dialogue about your needs for flood risk information.

Please sign in!

Today's Goals

The value of updated flood maps for your community Recap of Flood Risk Study history, including Discovery and Seneca Watershed study

Review countywide study scope, products and outreach process



FEMA Mitigation Division

Risk Analysis Branch

Goal: Stronger and Safer Communities

The Value of Updated Flood Maps for Local Communities

Flood Maps Guide Progress By:

ഹ

Identifying and Assessing Flood Risk Establishing Flood Insurance Rates

Determining Local Land Use

Informing Engineers and Developers Equipping Emergency Managers

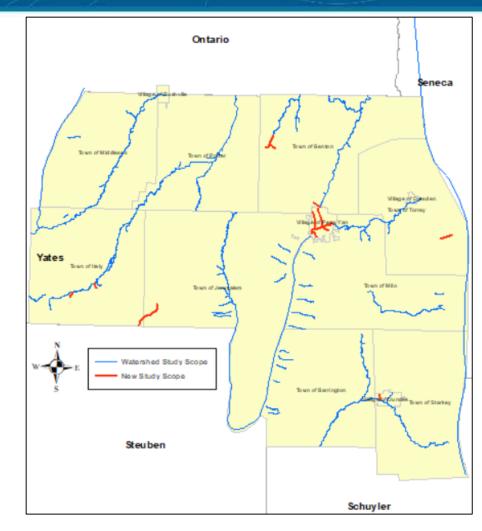
Why Update Flood Maps?

NFIP Policies for affected communities	NFIP Claims for affected communities	FEMA Insurance Claims Paid in affected communities	Hazard Mitigation Plan		
285	129	\$822 <i>,</i> 603	Expired 11/3/2016, Plan in Progress		

How did we get here? Review past activities

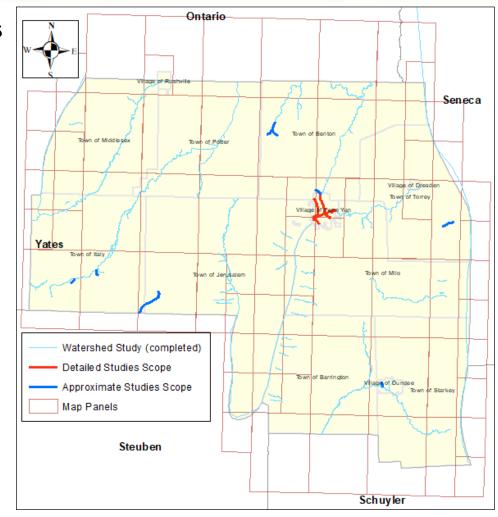
Discovery/Post-Discovery Progress *Recap*

- Meetings held in May 2014
- Discovery project completed in 2015
- FEMA reviewed community input to determine priorities
- Penn Yan noted flooding sources


FEMA

Seneca Watershed Study Project Recap

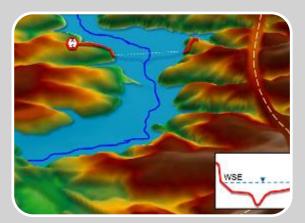
- Flood hazard analyses completed in Feb, 2018
- > 211 stream miles scoped in Yates
 - 41.9 miles Detailed
 - 164.0 miles Approximate
 - 5.1 miles Redelineation
- Flood Risk Review meeting conducted in Apr, 2018
- Work map products shared with the communities



What is being studied now? Discuss scope of new study

Yates County, Countywide Flood Risk Study Scope

- First time digital countywide maps
- Additional flooding sources analyzed
 - 5.1 miles Detailed (AE) streams
 - 5.4 miles Approximate (A) streams
- Includes Seneca Watershed study
- 13 affected communities
- 74 map panels
- Multiple touchpoints



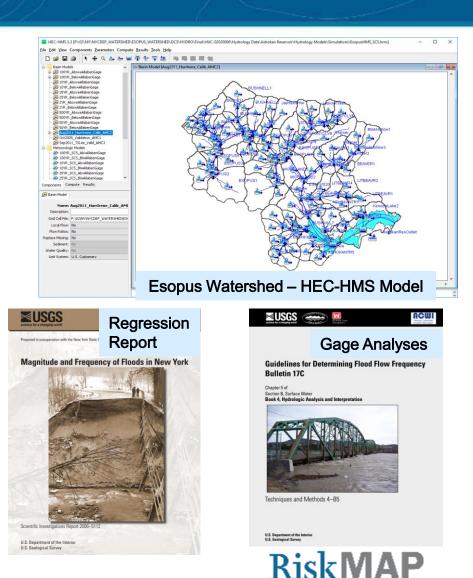
Flood Hazard Analysis

Hydrology

Volume of water? Peak Flows?

When will storm water or runoff make it to the stream?

Hydraulics


Will the stream in question be able to convey all storm water or runoff that arrives?

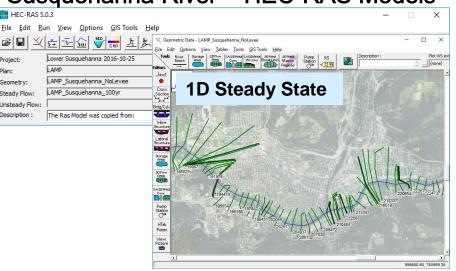
Floodplain Mapping

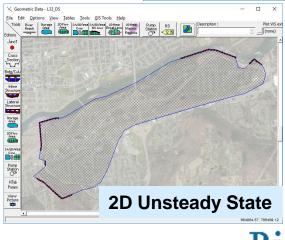
What areas of a community will be inundated based on engineering analysis?

Hydrologic Analysis

- Typical Methods FEMA utilizes
 - Statistical Gage Analyses
 - Regression Analyses
 - Rainfall Runoff Modeling
- Gage/Regression are based on availability stream gage data
- Rainfall-Runoff physical modeling chosen due to limited gage data
 - Using USACE's HEC-HMS Program
- Special Case: Stage-Discharge
 relationship for Keuka Lake Outlet
- Discharges developed for
 - **10%**, 4%, 2%, 1%, 1%+, 1%-, 0.2%
 - Inputs for hydraulic analyses

Increasing Resilience Together

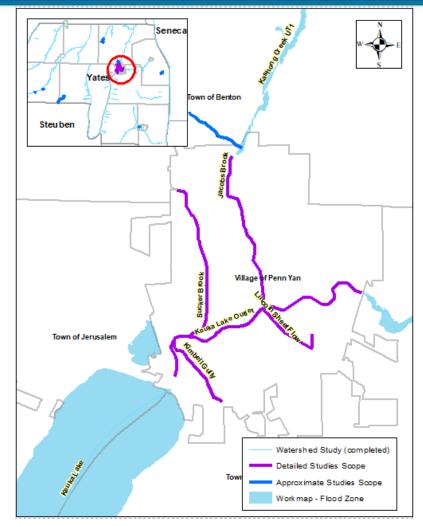



Hydraulic Analysis

- Types of Analyses
 - One Dimensional (1D) Steady State
 - One Dimensional (1D) Unsteady State
 - Two Dimensional (2D) Unsteady State
- Modeling developed using USACE's HEC-RAS Program.
- Terrain Data 2012 LiDAR
 - Provides topographic elevation information
 - Supplemented by field survey
- Field Survey for Detailed only
 - Collection underway
- Flood hazard Data Generated
 - Elevations: 10%, 4%, 2%, 1%, 1%+, 1%-, 0.2%
 - Floodplain extents: 1%, 0.2%

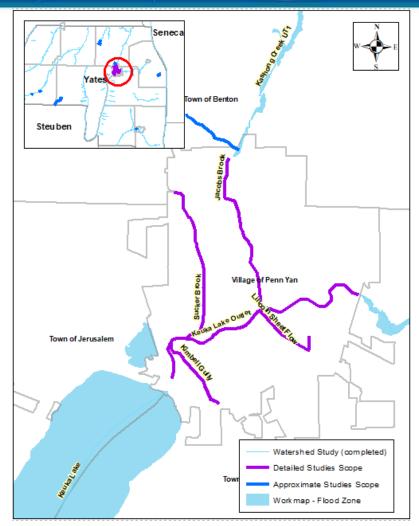
FEMA

Susquehanna River – HEC-RAS Models



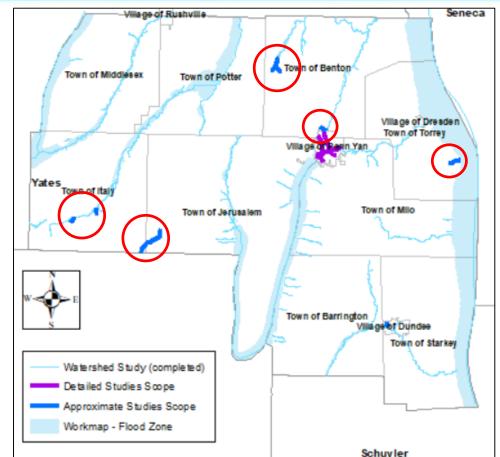
Detailed Streams *Hydrologic Analysis*

- 5 Flooding Sources
 - Keuka Lake Outlet -1.8 miles
 - Jacobs Brook -1.1 miles
 - Kimbell Gully 0.6 miles
 - Lincoln Sheet Flow 0.5 miles
 - Sucker Brook 1.1 miles
- Hydrologic Analyses
 - Stage-Discharge relationship for Keuka Lake Outlet
 - Rainfall-Runoff modeling for other 4 streams
 - USACE's HEC-HMS Program
 - Discharges developed for
 - **10%**, 4%, 2%, 1%, 1%+, 1%-, 0.2%



Detailed Streams *Hydraulic Analysis / Mapping*

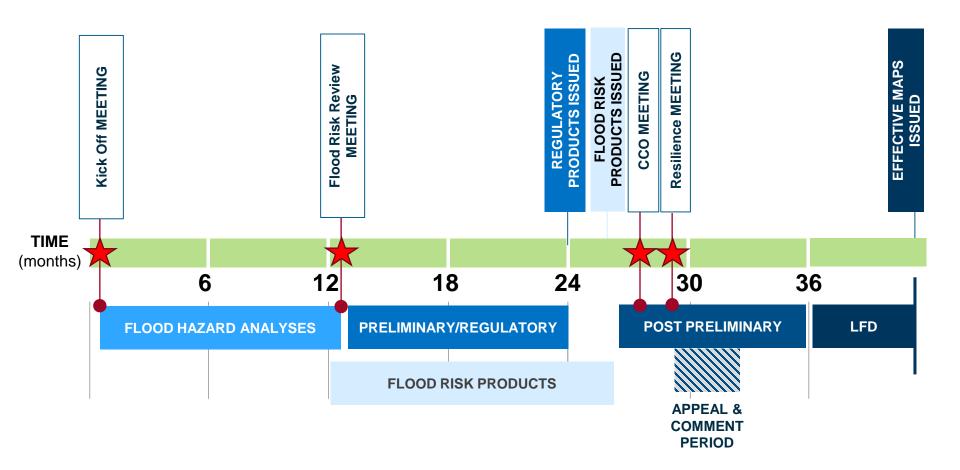
- ► Terrain
 - 2012 FEMA LiDAR Data
- Field Survey for Detailed Only
 - Collection underway: 21 Bridges/61 Natural Sections
- Hydraulic Analyses
 - USACE's HEC-RAS Program
 - One-dimensional steady state analyses
 - Two-dimensional unsteady state analyses for Lincoln sheet flow
 - · Water surface profiles developed for
 - **10%**, 4%, 2%, 1%, 1%+, 1%-, 0.2%
- Mapping
 - Floodplain extents for 1% and 0.2%, including floodway



Approximate Streams

- ▶ 9 streams, totaling 5.4 miles
- Hydrologic Analyses
 - Regression Analyses using USGS StreamStats web application
 - Discharges developed for
 - **•** 10%, 4%, 2%, 1%, 1%+, 1%-, 0.2%
- Terrain
 - 2012 FEMA LiDAR Data
- No field survey conducted
- Hydraulic Analyses
 - USACE's HEC-RAS Program
 - One-dimensional steady state analyses
- Floodplain extents for 1% and 0.2%

FEMA



Where are we now and what is next? Discuss next steps

Overall Flood Risk Project Timeline

Major Study Milestones

Data Development (12 months)

- Terrain processing
- Field reconnaissance and survey
- Hydrologic modeling (620 letters)
- Hydraulic modeling (620 letters)
- Floodplain mapping (workmaps)

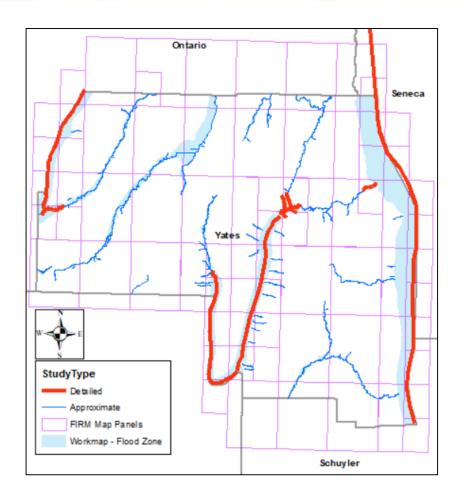
- Flood Risk Review Meeting
 - Work map products (14 months)
- Regulatory Product Update (FIRM & FIS)
 - Preliminary issuance (24 months)

Resilience Meeting

Flood risk products (28 months)

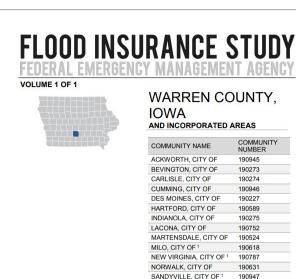
What will communities receive? Regulatory Products

Work Maps


- Draft floodplain mapping shared using work maps
- Flood Risk Review meeting provides a review of the new engineering analysis results, allowing communities to:
 - Identify potential updates for Hazard Mitigation Plans
 - Provide insight and input on hydrology and hydraulic results in updated study area
 - Seek local buy-in and review possible use of analysis
 - Identify areas of large changes and potential opportunities for risk reduction
 - Identify risk communications needs and options

Regulatory Products

- Regulatory product development commences after work map comment period
- Seamless countywide mapping produced
 - Seneca Watershed Study
 - This Countywide Study
- Digital Flood Insurance Rate Map (DFIRM) Database
- ► 74 FIRM Panels
- Flood Insurance Study (FIS) Report


Flood Insurance Rate Map (FIRM) Example

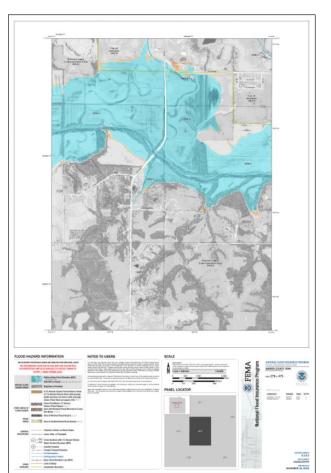
x 19181C PRELIM metadata.xml L Comm Info.dbf L Comm Revis.dbf L ManningsN.dbf L_Meetings.dbf L Mtg POC.dbf L Pol FHBM.dbf L_Source_Cit.dbf L Summary Discharges.dbf L XS Elev.dbf L XS Struct.dbf S Base Index.shp S BFE.shp S_FIRM_Pan.shp S Fld Haz Ar.shp S Fld Haz Ln.shp S Gen Struct.shp S Hydro Reach.shp S_Label_Ld.shp S Label Pt.shp S_Nodes.shp S PLSS Ar.shp S Pol Ar.shp S_Profil_BasIn.shp S Stn Start.shp S_Subbasins.shp S Submittal Info.shp S_Trnsport_Ln.shp S_Wtr_Ln.shp S_XS.shp Study_Info.dbf

dBASE Table Shapefile dBASE Table

XML Document

dBASE Table

REVISED:	
NOVEMBER 16, 2018	
FLOOD INSURANCE STUDY NUM	ABER
19181CV000C	



¹No Special Flood Hazard Areas Identified

190949

190948

190912

SPRING HILL, CITY OF

ST. MARYS, CITY OF

WARREN COUNTY,

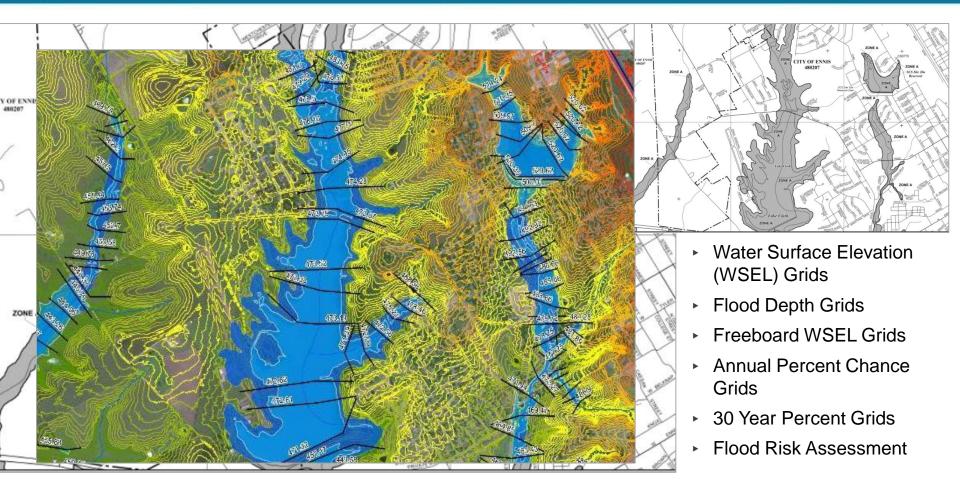
UNINCORPORATED

AREAS

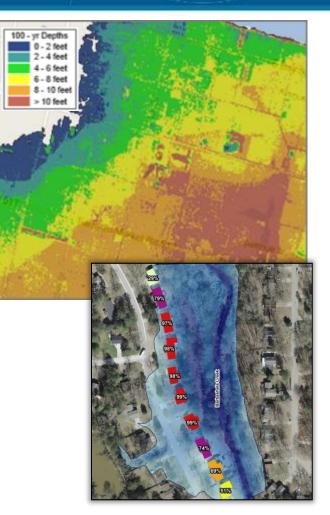
What will communities receive? Flood Risk Products

Knowing the Risk

If a community does not know or understand their risk, they may struggle to....


- effectively plan use of resources for natural hazards and potential disasters;
- implement effective hazard mitigation projects;
- effectively regulate current and future development without increasing risk; and/or
- effectively communicate about natural hazards to its residents about personal and community mitigation projects that can reduce long-term risk.

Flood Risk Datasets



Products & Delivery Items: Flood Depth and Analysis Grids

- Flood hazard data backbone for these product development
- Flood Depth and Water Surface Grids
 - Frequencies: 10%, 4%, 2%, 1% and 0.2%
- Water Surface Freeboard Grids
 - +1, +2 & + 3 feet over 1% water surface
- Percentage annual chance of flooding Grid
- Chance of flooding over the average mortgage (30-year) time period grid
- Flood Risk Assessment Analysis (HAZUS)
- Areas of mitigation interest (AOMI)

Flood Risk Database

- Flood risk products are stored and delivered in GIS format - Geodatabase
- Includes spatial & tabular data
- Facilitates infusion into local GIS systems and analyses

			Estimated Potential Losses for Flood Event Scenarios									
	Total Inventory		10% (10-yr)		2% (50-yr)		1% (100-yr)		0.2% (500-yr)		Annualized (\$/yr)	
	Estimated Value	% of Total	Dollar Losses ¹	Loss Ratio ²	Dollar Losses ¹	Loss Ratio ²	Dollar Losses ¹	Loss Ratio ²	Dollar Losses ¹	Loss Ratio ²	Dollar Losses ¹	Loss Ratio ²
Residential Building and Contents Losses	\$422,000,000	71%	\$2,500,000	1%	\$3,800,000	1%	\$4,500,000	1%	\$6,200,000	1%	\$300,000	N/A
Commercial Building and Contents Losses	\$122,800,000	21%	\$2,300,000	2%	\$3,700,000	3%	\$4,200,000	3%	\$5,600,000	5%	\$300,000	N/A
Other Building and Contents Losses	\$45,500,000	8%	\$70,000	N/A	\$100,000	N/A	\$200,000	N/A	\$200,000	N/A	\$10,000	N/A
Total Building and Contents Losses ³	\$590,300,000	100%	\$4,800,000	1%	\$7,600,000	1%	\$8,800,000	1%	\$12,100,000	2%	\$700,000	N/A
Business Disruption ⁴	\$0	N/A	\$200,000	N/A	\$200,000	N/A	\$200,000	N/A	\$200,000	N/A	\$20,000	N/A
TOTAL ⁵	\$590,300,000	N/A	\$4,900,000	1%	\$7,700,000	1%	\$8,900,000	2%	\$12,100,000	2%	\$700,000	N/A

Dam Breach Analysis

- Up to 5 Medium/High Hazard Dams analyzed
- Engineering analyses developed for FIRM will be leveraged
- Flood Inundation Maps will be developed

Contacts

FEMA Project Monitor

- Shudipto Rahman
- 202-702-4273
- shudipto.rahman@fema.dhs.gov

FEMA Outreach Coordinator

- Stephanie Gootman
- 202-802-3137
- stephanie.gootman@fema.dhs.gov

STARR II Project Manager

- Srikanth Koka
- 703-849-0584
- skoka@dewberry.com
- STARR II Regional Support Center Lead
 - Curtis Smith
 - 646-490-3929
 - curtis.smith@stantec.com

Questions? Comments?

Thank you!

